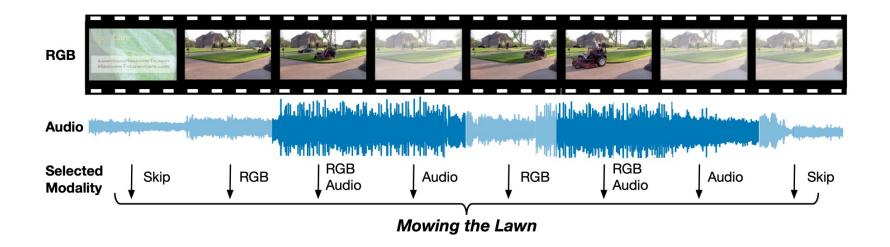
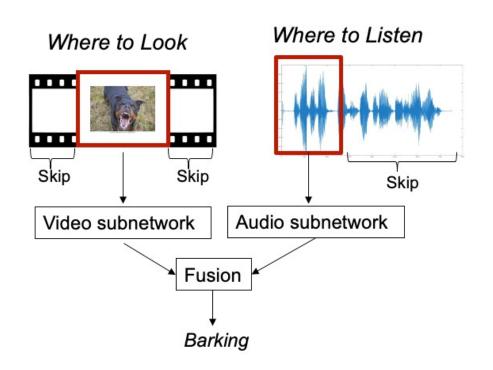


AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition


Rameswar Panda^{1*}, Chun-Fu (Richard) Chen^{1*}, Quanfu Fan¹, Ximeng Sun², Kate Saenko^{1,2}, Aude Oliva^{1,3}, Rogerio Feris¹

MIT-IBM Watson AI Lab, ² Boston University, ³ MIT
 *: Equal Contribution

Project page: https://rpand002.github.io/adamml.html


Motivation

Most of the multi-modal video recognition methods are computationally expensive, as they usually process all the data (including redundant/irrelevant parts)

Do all the segments require both RGB and audio stream to recognize the action as "Mowing the Lawn" in this video?

Key Idea

An adaptive multi-modal learning framework, that selects on-the-fly the optimal modalities for each segment conditioned on the input for efficient video recognition

To the best of our knowledge, this is the first work on data-dependent selection of different modalities for efficient video recognition.

AdaMML

Lightweight Policy Network Policy Network Recognition RGB RGB Network Optical Flow RGB Difference Subnet 1 Mowing → Fusion → the Lawn" Audio Subnet 2 Audio Cross-Entropy Loss Subnet 3 Efficiency Loss Tim

Video Recognition Network

Our approach consists of a policy network and a recognition network composed of different sub-networks that are trained jointly (via late fusion with learnable weights) for recognizing videos.

Results

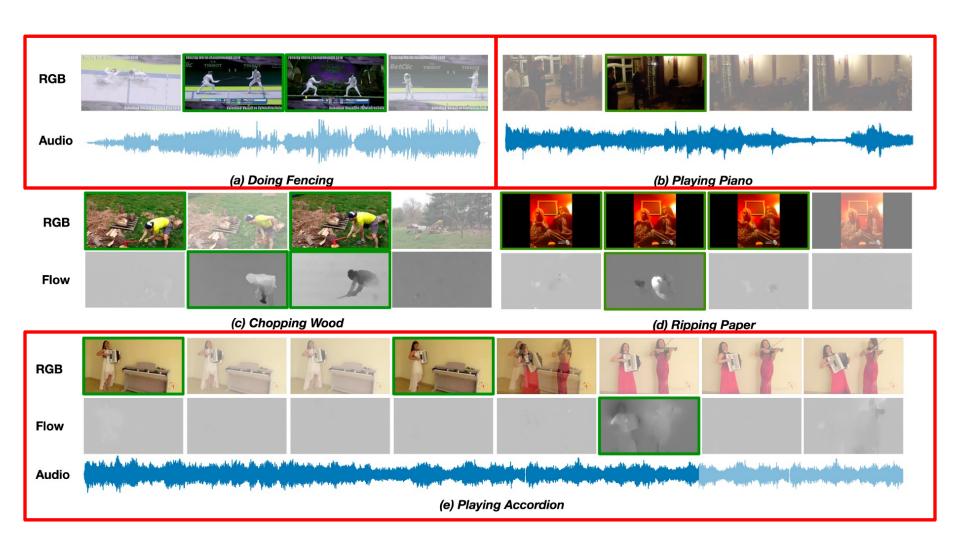
Dataset	Kinetics-Sounds				ActivityNet			
Method	Acc. (%)	Selection RGB	on Rate (%) Audio	GFLOPs	mAP (%)	Selection RGB	on Rate (%) Audio	GFLOPs
RGB Audio	82.85 65.49	100	_ 100	141.36 3.82	73.24 13.88	100	_ 100	141.36 3.82
Weighted Fusion AdaMML	87.86 88.17	100 46.47	100 94.15	145.17 76.45 (-4 7.3 %)	72.88 73.91	100 76.25	100 56.35	145.17 94.01 (-35.2%)

RGB + Audio

		Sele	ction Rat		
Method	Acc. (%)	RGB	Flow	Audio	GFLOPs
RGB	82.85	100	-	_	141.36
Flow	75.73	_	100	_	163.39
Audio	65.49	_	_	100	3.82
Weighted Fusion	88.25	100	100	100	308.56
AdaMML-Flow	88.54	56.13	20.31	97.49	132.94 (-56.9%)
AdaMML-RGBDiff	89.06	55.06	26.82	95.12	141.97 (-54.0 %)

RGB + Flow + Audio

Comparison with Weighted Fusion Baseline


Results

	Activi	tyNet	FCVID		
Method	mAP (%)	GFLOPs	mAP (%)	GFLOPs	
FrameGlimpse	60.14	33.33	67.55	30.10	
FastForward	54.64	17.86	71.21	66.11	
AdaFrame	71.5	78.69	80.2	75.13	
LiteEval	72.7	95.1	80.0	94.3	
AdaMML	73.91	94.01	85.82	93.86	

Comparison with State-of-the-art Methods

New SOTA for efficient video recognition, improving prior best result in terms of accuracy, and computational efficiency

Results

Thank you and welcome to our poster!

Project Page: https://rpand002.github.io/adamml.html