
AdaMML: Adaptive Multi-Modal Learning for **Efficient Video Recognition**

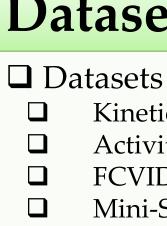
Rameswar Panda^{1*}, Chun-Fu (Richard) Chen^{1*}, Quanfu Fan¹, Ximeng Sun², Kate Saenko^{1,2}, Aude Oliva^{1,3}, Rogerio Feris¹

¹ MIT-IBM Watson AI Lab, ² Boston University, ³ MIT (*: Equal Contribution)

composed of different sub-networks that are trained jointly (via late fusion

Policy network decides what modalities to use per segment to achieve the

segment-level predictions. **Finally**, the network averages all segment-level


$$h_t, o_t = \text{LSTM}(f_t, h_{t-1}, o_{t-1})$$

$$\hat{P}_{k} = \underset{i \in \{0,1\}}{\operatorname{argmax}} (\log z_{i,k} + G_{i,k}), \quad k \in [1, ..., K]$$
$$P_{i,k} = \frac{\exp((\log z_{i,k} + G_{i,k})/\tau)}{\sum_{j \in \{0,1\}} \exp((\log z_{j,k} + G_{j,k})/\tau)}$$

gradient of the discrete samples by computing the gradient of the continuous softmax relaxation.

$$\mathbb{E}_{(V,y)\sim\mathcal{D}_{train}}\left[-y\log(\mathcal{P}(V;\Theta)) + \sum_{k=1}^{K}\lambda_k\mathcal{C}_k\right] \quad \mathcal{C}_k = \left\{\begin{array}{cc} (\frac{|U_k|_0}{C})^2 & \text{if correct}\\ \gamma & \text{otherwise} \end{array}\right.$$

• Evaluation Metrics: video-level mAP or top-1 accuracy, GFLOPS, Selection Rate

	A
Method	mAP (
FrameGlimpse	60.14
FastForward	54.64
AdaFrame	71.5
LiteEval	72.7
AdaMML	73.91
	ethod ge Fusion
Class-wise V	-
	Fusion
	Fusion*
0	ted Fusion
*: concatenatin	g feature vecto

Project Page: https://rpand002.github.io/adamml.html

CCVOCTOBER 11-17

Datasets and Settings

Kinetics-Sounds: Training: 22,521 videos – Testing: 1532 videos – 31 classes ActivityNet-v1.3: Training: 10,024 videos – Testing: 4926 videos – 200 classes FCVID: Training: 45,611 videos – Testing: 45,612 – 239 classes Mini-Sports1M: Training: 14,610 videos – Testing: 4870 videos – 487 classes

□ Tasks: (I) RGB + Audio, (II) RGB + Flow, and (III) RGB + Flow + Audio

□ Model Architectures

Policy Network: MobileNetV2; Recognition Network: TSN-like ResNet-50

Dataset	Kinetics-Sounds				ActivityNet				
	Selection Rate (%)				Selection Rate (%)				
Method	Acc. (%)	RGB	Audio	GFLOPs	mAP (%)	RGB	Audio	GFLOPs	
RGB	82.85	100	—	141.36	73.24	100	_	141.36	
Audio	65.49	_	100	3.82	13.88	_	100	3.82	
Weighted Fusion	87.86	100	100	145.17	72.88	100	100	145.17	
AdaMML	88.17	46.47	94.15	76.45 (-47.3%)	73.91	76.25	56.35	94.01 (-35.2%)	

Video recognition results with RGB + Audio modalities on Kinetics-Sounds and ActivityNet

Method	Acc. (%)	RGB	Flow	GFLOPs
RGB	82.85	100	s s.	141.36
Flow	75.73	-	100	163.39
Weighted Fusion	83.47	100	100	304.75
AdaMML-Flow	83.82	56.04	36.39	151.54 (-50.3%)
AdaMML-RGBDiff	84.36	44.61	37.40	137.03 (-55.0%)

RGB + Flow	on Kinetics-Sounds
	on miches bounds

		Sele	ction Rat		
Method	Acc. (%)	RGB	Flow	Audio	GFLOPs
RGB	82.85	100	-	-	141.36
Flow	75.73	-	100	-	163.39
Audio	65.49	-	-	100	3.82
Weighted Fusion	88.25	100	100	100	308.56
AdaMML-Flow	88.54	56.13	20.31	97.49	132.94 (-56.9%)
AdaMML-RGBDiff	89.06	55.06	26.82	95.12	141.97 (-54.0%)

RGB + Flow + Audio on Kinetics-Sounds

ActivityNet	FC	VID	12						Netv	vork		
P (%) GFLO	Ps mAP (%)	GFLOPs		Kinetics	-Sounds	Mini-Sp	ports1M	Method	RGB	Audio	mAP (%)	GFLOPs
0.14 33.33 4.64 17.80	71.21	30.10 66.11	Method	Acc. (%)	GFLOPs	mAP (%)	GFLOPs	ListenToLook AdaMML _{112×112} AdaMML _{224×224}	ResNet-18 ResNet-18 ResNet-18	ResNet-18 ResNet-18 ResNet-18	76.61 79.48 80.05	112.65 70.87 82.33
1.5 78.69 2.7 95.1 3.91 94.0	80.0	75.13 94.3 93.86	LiteEval AdaMML	72.02 88.17	104.06 76.45	43.64 46.08	151.83 138.32	AdaMML _{224×224} AdaMML _{224×224}	ResNet-50 EfficientNet-b3	MobileNetV2 EfficientNet-b0	84.73 85.62	110.14 30.55

Comparison with State-of-the-art Methods

	RGB +	Audio	RGB -	Flow	RGB + Flow + Audio		
	Acc. (%)	GFLOPs	Acc. (%)	GFLOPs	Acc. (%)	GFLOPs	
n	88.15	145.17	83.30	304.75	88.18	308.56	
Fusion	87.86	145.17	83.82	304.75	87.75	308.56	
	86.49	145.17	83.47	304.75	88.06	308.56	
	87.73	145.17	83.30	304.75	87.84	308.56	
on	87.86	145.17	83.47	304.75	88.25	308.56	
	88.17	76.45	84.36	137.03	89.06	141.97	

□ 35%-55% reduction in FLOPS while improving accuracy over weighted fusion baseline □ Significantly outperforms state-of-the-art methods on ActivityNet and FCVID

□ Outperforms LiteEval on all datasets (~16% in Kinetics-Sounds) □ With same setting, AdaMML outperforms ListenToLook on ActivityNet (~3% mAP)

□ New SOTA result on ActivityNet with EfficientNet

□ Consistently outperforms all hand-designed fusion strategies (~50% FLOPS savings) □ Significantly better than random policy variants

Comparison with fusion strategies on Kinetics-Sounds

Visualizations

		na ana amin'ny sorana amin'ny fisia tamin'ny Jeografia		
(a) Doing Fencing		(b) Playir	ng Piano	
CAR THE AND				
7 2	a a ^{tr}	- 6	×	
(c) Chopping Wood		(d) Rippii	ng Paper	
		A Frank		An office
		RT		1
and a second state of the state of the state of the state of the second state of the state of the state of the	et al a ser della surge atendite dura.	an a		ang pang ang pang pang pang pang pang pa

Qualitative examples showing the effectiveness of AdaMML in selecting the right modalities per video segment (marked by green borders). Our adaptive approach focuses on right modalities to use per segment for correctly classifying videos while taking efficiency into account.

ActivityNet

(e) Playing Accord