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Nyström Approximated Temporally Constrained
Multisimilarity Spectral Clustering Approach

for Movie Scene Detection
Rameswar Panda, Student Member, IEEE, Sanjay K. Kuanar, and Ananda S. Chowdhury, Senior Member, IEEE

Abstract—Movie scene detection has emerged as an important
problem in present day multimedia applications. Since a movie
typically consists of huge amount of video data with widespread
content variations, detecting a movie scene has become extremely
challenging. In this paper, we propose a fast yet accurate solution
for movie scene detection using Nyström approximated multisim-
ilarity spectral clustering with a temporal integrity constraint.
We use multiple similarity matrices to model the wide con-
tent variations typically present in any movie dataset. Nyström
approximation is employed to reduce the high computational
cost of constructing multiple similarity measures. The temporal
integrity constraint captures the inherent temporal cohesion of
the movie shots. Experiments on five movie datasets from differ-
ent genres clearly demonstrate the superiority of the proposed
solution over the state-of-the-art methods.

Index Terms—Movie scene detection, Nyström approximation,
similarity matrices, spectral clustering.

I. INTRODUCTION

W ITH the recent development of inexpensive digital
multimedia technologies along with lower cost of pub-

lishing and wide potential reach, there has been a tremendous
increase in the number of videos over the Internet [1], [2].
For example, one of the most prevalent social media services
and Web sites like YouTube reported that over 1 billion unique
users visit YouTube each month and 300 h of video, includ-
ing movies, are uploaded every minute, amounting to nearly
1.5 billion hours of video every year. The task of managing
this large amount of video information is an enormously chal-
lenging task. Computationally efficient methods are necessary
to process, organize, summarize, and index this information in
a semantically meaningful manner [3]–[5].
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Movie scene detection is an important problem in the area
of multimedia content management. Scene(s), composed of
groups of shots, usually emphasize specific concepts (e.g., a
fixed setting or the same action) and are hence found to be
semantically meaningful. Shot level video segmentation and
video summarization, the two existing techniques for handling
large amount of video data prevalent in the Internet are found
to be inadequate to handle the current problem. This is largely
because movies are of long durations and have widely vary-
ing contents. Shot level segmentation methods are inefficient
to organize the chapters of a movie which correspond to var-
ious themes. On the other hand, browsing a movie can be
often more convenient and meaningful using less number of
scenes (say, 100) compared to a large number of key frames
(say, 10 000) which can be obtained from typical video sum-
marization methods [6]–[12]. The scene detection problem can
be modeled as a shot clustering problem, where each cluster
should be semantically distinct [13]–[15]. In this paper, we
propose a novel fast yet accurate solution for detecting movie
scenes using Nyström approximated multisimilarity spectral
clustering with a temporal integrity constraint.

A. Related Work

This paper spans following areas of interest—video sum-
marization, video scene detection, and multiview learning. We
will review some representative works from these areas.

1) Video Summarization: There exists several methods for
video summarization. For example, de Avila et al. [6] used
color feature and an improved k-means algorithm to choose
the key frames. Kuanar et al. [7] applied both color and tex-
ture features with a dynamic Delaunay clustering for the same
purpose. Almeida et al. [8] utilized the notion of color sim-
ilarity between successive frames to extract the key frames
in the MPEG compressed domain. Han et al. [9] examined
color in combination with human in the loop guidance for per-
sonalized video summarization. Recently, a work on scalable
video summarization using skeleton graph and random walk
is reported [10]. For most recent reported results on key frame
summarization in YouTube videos (please see [16], [17]). A
more comprehensive review of video summarization approach
can be seen [11], [12].

2) Video Scene Detection: Since, we propose a graph-
theoretic solution, we first discuss some prominent graph-
based approaches for video scene detection. Yeung et al. [18]

2168-2267 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:rpand002@ucr.edu
mailto:sanjay.kuanar@gmail.com
mailto:aschowdhury@etce.jdvu.ac.in
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


PANDA et al.: NYSTRÖM APPROXIMATED TEMPORALLY CONSTRAINED MULTISIMILARITY SPECTRAL CLUSTERING APPROACH 837

represented video as a scene transition graph, where shots are
clustered and then each cluster is represented by a node in the
graph. The complete link method is used to split the graph into
several subgraphs (i.e., scenes). In [19], a weighted shot simi-
larity graph (SSG) is constructed, where each node represents
a shot and the edges between shots are weighted by color and
motion similarity information. Then normalized cut is used
for recursive bi-partitioning of SSG, to maximize intrasub-
graph similarities while minimizing intersubgraph similarities.
These partitions depict individual scenes present in the video.
A similar approach is presented in [20], where shot cluster-
ing was achieved using Ncuts algorithm in the first step and
the resulting clusters are represented by a temporal graph. In
another graph partition-based method [21], a 1-D signal is
constructed for each feature. Chasanis et al. [15] proposed a
spectral graph-based approach using visual similarity of indi-
vidual shots. A label is assigned to each shot depending on the
cluster it belongs to. Then, a global sequence alignment algo-
rithm is applied to detect the change in shot label pattern.
Odobez et al. [22] proposed a spectral method with auto-
matic model selection for video scene detection. However, the
approach is only restricted to scene detection in home videos.
Another spectral clustering method for scene segmentation is
presented in [23], where Zhang et al. used the concept of JSEG
measure to capture the local information embedded in video
shots. Although the method presented in [23] is independent
of video genres but the incorporation of temporal information
in form of a sliding window while computing the shot similar-
ity greatly influences the detection results. Sakarya et al. [24]
introduced a movie scene detection method based on finding
dominant sets in SSG. In this paper, two graph partitioning
approaches, i.e., tree-based approach (TBM) and order-based
approach (OBM), using dominant set clustering are applied
for movie scene detection. However, inaccurate estimation
of control variables, such as temporal distance decay factor
and outlier detection factor may adversely affect the scene
detection result.

Other than graph-theoretic methods, statistical approaches
are also applied for the scene detection problem. A
Markov Chain Monte Carlo method is presented in [13].
The authors use three types of updates, i.e., diffusion, merge,
and split to determine the scene boundaries. However, this
method is highly sensitive to model prior and the number of
shots. Tan and Lu [25] proposed a Gaussian mixture model
for scene segmentation, where each scene is modeled as a
Gaussian density assuming similar visual features for the shots
constituting a scene. This method is able to discover scene-
level semantics for sports videos. However, for more general
video genres, such as movies, only using the features of
individual shot is not sufficient. The impact from the neighbor-
ing shots (i.e., temporal integrity) should also be considered.
Sundaram and Chang [26] proposed a computational scene
model to achieve video scene segmentation. In this paper,
video and audio scenes were detected separately and these
two were used with some cinematic rules in order to construct
scenes.

Apart from the above unsupervised approaches, there
has been a growing interest in developing supervised

or semi-supervised algorithms for detecting video scene
boundaries [27]–[29]. A generic framework based on semi-
supervised learning for video annotation can be seen in [30].
Zhang et al. [30] used combination of multimodal informa-
tion by developing a graph-based multiple instance learning
framework for video annotation. It jointly explores small-scale
expert labeled videos which are obtained from analysis and
alignment of well-structured video related text (e.g., movie
script and captions) and large-scale unlabeled videos which
are obtained by querying related events from the video search
engine (e.g., YouTube and Google) to train a discriminative
model for video annotation. A novel metric for evaluating
scene segmentation methods is presented in [31]. Recently,
deep learning-based approaches have been developed for scene
detection in broadcast videos [31], [32]. For most recent
reported results on scene detection in YouTube videos (please
see [5], [31]).

3) Multiview Learning: In recent years, many methods
of clustering from multiview data by considering different
views have been proposed. These views may be obtained from
multiple sources or different feature subsets [33]–[42]. This
paper is closely related to different multiview learning meth-
ods since we use different sets of features of a movie for
efficient detection of scene boundaries. In contrast to the prior
works, our proposed approach is different in two significant
ways. First, we consider Nyström approximation in construct-
ing the feature similarity matrices which are then used in the
spectral clustering. The use of Nyström approximation reduces
the computation burden to a large extent with only a marginal
compromise in the detection performance. Second, we explic-
itly use a temporal constraint in our formulation to enforce
the temporal cohesion between video shots which is crucial in
movie scene detection.

By reviewing the related works on scene detection, we found
that the following three key problems in movie scene detection
still remain unaddressed to a considerable extent.

1) Proper Selection of Features: It has been observed
that different features and homogeneity criteria gener-
ally lead to different segmentations of the same video.
This problem is even more prominent in case of movie
scene detection as different types of content variations
(due to variations in shooting and editing effects at var-
ious stages of the video life cycle) exist across the
shots. So, selection of multiple features and an opti-
mal weight assignment policy for their combination is
highly necessary, a task missed by most of the prior
works.

2) Use of Computationally Efficient Technique for Shot
Similarity Calculation: Several recently proposed scene
detection techniques compute pair-wise similarities for
the clustering purpose [14], [15]. Such computation
has to be carried out for all possible shot pairs in a
video [43]. A case in the point is the movie gone in
60 s with nearly 2900 shots. Processing this movie for
five similarity measures can easily involve 42 million
pair-wise comparisons! Hence, an efficient approxima-
tion technique is required for clustering of large data like
movie to substantially reduce the computational costs.



838 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 3, MARCH 2018

3) Representation of Temporal Cohesion of Video Shots:
It can be easily noticed that a video scene has tempo-
ral integrity. So, temporal cohesion of movie shots is
required to achieve accurate scene detection [14]. Most
of the previous shot clustering approaches use temporal
distance as a solution for this problem [14], [24]. Due to
the absence of prior knowledge about the video content
and the duration of scenes, it is difficult to determine an
appropriate weight parameter that will account for the
contribution of the temporal distance in the computation
of the overall similarity between shots.

In this paper, we address the above three key problems in our
solution pipeline. First, a combination of multiple shot simi-
larity matrices involving color, texture, motion, and semantics
is proposed to capture the diverse characteristics of different
types of movie scenes. For example, color feature can effec-
tively model a stationary scene whereas motion features are
essential for action scenes. Second, Nyström approximation
is employed to reduce the high computational cost of con-
structing multiple similarity measures. As a third contribution,
we have directly incorporated temporal integrity constraints
in the multisimilarity spectral clustering thereby obviating
incorporation of temporal distance in form of a similarity
matrix. Note that in the later case, prior knowledge is essen-
tial which is always difficult to obtain for movie scenes [15].
In addition, from pure theoretical perspective, the proposed
Nyström approximated temporally constrained multisimilarity
spectral clustering approach has not been applied in the field
of pattern clustering to the best of our knowledge. Note that,
the convergence is guaranteed for the Nyström approximated
eigenvectors but not for the generalized eigenvectors [43].

B. Theoretical Foundations

Our movie scene detection approach is primarily based on
spectral clustering and application of Nyström extension for
similarity matrix completion. Some useful theories pertaining
to our approach are briefly reviewed in this section.

1) Nyström Extension: The Nyström method is a tech-
nique for finding numerical approximations to eigenfunction
of integral equations of the form [43]∫

W(x, y)φ(y)p(y)dy = λφ(x) (1)

where p(y) represents the underlying probability density func-
tion, φ(y) indicates the eigenfunction and W(x, y) denotes the
similarity between x and y. For finding numerical approxima-
tion to (1), one need to choose ns number of landmark points
Z = {Z1, Z2 . . . Zns} from the given dataset X = {X1, X2 . . . Xn}
with ns << n. For any given point x in X, using Nyström
approximation we can write

1

ns

ns∑
i=1

W(x, Zi)φ̂(Zi) = λφ̂(x) (2)

where φ̂(x) is an approximation to the true φ(x). Equation (2)
cannot be solved directly as λ and φ̂(x) are both unknown.
In order to solve (2), one needs to substitute x with Zi, and
write it in matrix form A�̂ = P�̂∧, where A denotes the

similarity matrix between landmark points and �̂ represent
the eigenvectors of A. ∧ = diag{λ̂1, λ̂2, . . . , λ̂ns} is a diagonal
matrix. For an unsampled point, the jth eigenfunction at x can
be approximated as

�j(x) = 1

nsλ̂j

ns∑
i=1

W(x, Zi)φ̂j(Zi). (3)

With the above equation, the eigenvector for any arbitrary
point x can be approximated by the eigenvectors of the
landmark similarity matrix.

2) Nyström Extension to Spectral Clustering: Let A =
UA ∧A UT

A be the eigen-decomposition of A. Further, let B
denotes the similarity matrix between sample points and the
remaining points, with B ∈ Rm×(n−ns). From (3), the matrix
form of the Nyström extension is then BTUA∧−1

A , where BT

corresponds to W(Zi, ·), the columns of UA correspond to the
φ̂j(Zi)s, and ∧−1

A corresponds to the 1/̂λjs. Let W ∈ Rn×n be
the similarity matrix between all data points. For simplicity
in notation, let us rearrange the points such that ns number of
randomly sampled points come first and remaining samples
come next. Now, partition the similarity matrix W as

W =
[

A B
BT C

]
(4)

where C ∈ R(n−ns)×(n−ns) is the similarity matrix between
unsampled points. Using the approximated eigenvectors Û =
[UA; BTUA ∧−1

A ], W can be estimated as

Ŵ =
[

A B
BT BTA−1B

]
=
[

A
BT

]
A−1[A B

]
. (5)

For spectral clustering, the similarity matrix is required to be
normalized, i.e., one has to calculate row sums of W to acquire
D. Depending on definiteness of A and D can be estimated
through the row sums of Ŵ in two different ways.

Case 1 (A Is Positive Definite): When matrix A is positive
definite, all the eigenvalues of matrix A are positive and A−1/2

is defined. The orthogonalized approximate eigenvectors are
obtained by

V̂ =
[

A
BT

]
A−1/2US∧−1/2

S (6)

where S = A + A−1/2BBTA−1/2 with eigen decomposition
US ∧S UT

S .
Case 2 (A Is Indefinite): When A is indefinite, then two steps

are required to get the normalized solution. Let U
T
S = [UT

S ∧−1
S

UT
S B] and Z = Û∧1/2 so that Ŵ = ZZT . F

∑
FT denote the

diagonalization of ZTZ. Then matrix V = ZF
∑−1/2 contains

the leading eigenvectors of Ŵ. More details about the Nyström
approximation and its extension to spectral clustering can be
seen at [43].

II. PROPOSED FRAMEWORK

Our proposed method consists of four major steps, namely:
1) shot detection and representation; 2) shot similarities com-
putation; 3) spectral grouping of shots; and 4) cluster sequence
analysis. A block diagram of the proposed method is shown
in Fig. 1. Now, we describe these four steps in details under
four sections.
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Fig. 1. Flowchart of the proposed method. We first divide the movie into
shots using an information theory-based shot detection method and represent
each shot by its middle frame. We employ Nyström sampling to select a
group of shots and compute different shot similarities (color, texture, motion,
and semantic). Nyström approximation is employed to reduce the high com-
putational cost of constructing multiple similarity measures. We then apply
multisimilarity spectral clustering with a temporal integrity constraint to clus-
ter the shots. Finally, shot-cluster sequence analysis is used to detect the
precise scene boundaries.

A. Shot Detection and Representation

We first divide the movie into shots using information
theory-based shot detection method by Černeková et al. [44].
This method is shown to yield high detection accuracy on the
TRECVID 2003 video test set. Various schemes exist to rep-
resent the video shots using a single key frame or a set of key
frames [12], [18], [21]. Fig. 2 shows a comparative analysis of
shot representation methods. In general, on analyzing Fig. 2,
we can conclude that the middle frame is a good choice for
representing the movie shots as it can capture the general view
of the overall content. Hence, we have taken the middle frame
of a shot as its representative thereby avoiding considerable
computations in selecting the key frames of a shot [14].

B. Shot Similarities Computation

To properly capture diverse characteristics of different types
of movie scenes, we apply multiple feature similarity matrices.
Color, texture, and motion similarity functions between two
shots (i.e., representative key frames) are calculated. Color his-
togram is obtained using the HSV color space, as it is found
to be more resilient to noise [45]. We use 16 ranges of H,
4 ranges of S, and 4 ranges of V to form a 256-D color fea-
ture vector and an edge histogram descriptor [46] to form a
80-D texture feature vector. Histogram-based visual features
are found to work well for stationary scene boundary detec-
tion [14], [24], [47], [48]. For calculating the color and texture
similarity, we adopt the method of [24]. However, for action

Fig. 2. Shot representative frames using different methods from the movie
“Kingdom of Heaven.” Representative frames detected by different methods
for two shots are arranged in rows. First row: representative frames selected
by the method [24], second row: frames selected by the method [15], third
row: frames selected by the key frame extraction method [8], fourth row: key
frames selected by the method [7], and fifth row: middle frame. As can be
seen from the figure, there is a little difference among the different methods in
representing a shot. Thus, the middle frame is a good choice for representing
the movie shots as it can capture the general view of the overall content by
avoiding considerable computational overhead in selecting the key frames.

scenes, these visual features cannot work when scene changes
are encountered very frequently and it may result in over-
segmentation. Hence, histogram-based motion activity analysis
is required for action scene detection. The above visual sim-
ilarities do not take into account the shot semantics. So, we
also consider semantic similarity between shots in this paper.
Semantic similarity between documents is addressed using the
Bag of words model [49]. Bag of visual words model for
a video captures semantic meaning which can improve clus-
tering of shots [50], [51]. We compute visual words using
K-means clustering on SIFT features [52] extracted from all
shot representative frames of a movie. Each visual word is
represented by a cluster. A visual word wj appears in a shot
si if there exists some SIFT feature points in the shot rep-
resentative frame within the jth cluster. Finally, a shot is
represented by

S = ν1, ν2, . . . , νj, . . . , νk. (7)

In (7), νj represents the normalized frequency of the jth visual
word and k is the total number of visual words/clusters. We
consider 1 00 000 SIFT features of a movie and group them
into 1000 clusters. Similar number of visual words is also
used by Kumar et al. [53], where the authors clustered the
sift features into 1500 visual words. SemanticSim function
captures the semantic similarity between two shots i and j and
is given by

SemanticSim(i, j) = 1 −
k∑

l=1

min
(
νil, νjl

)
(8)

where νil is the normalized frequency of the lth visual word
in shot i and k is the total number of visual words. A general
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shot similarity matrix is represented by

W(i, j) = e−a∗Sim(i,j). (9)

In (9), Sim(i, j) represents the similarity function between any
two shots i and j and a is a control parameter [54].

C. Spectral Grouping of Shots

Given n movie shots s1, s2, . . . , sn, m similarity matrices
Wk, (k = 1, . . . , m), wi,j;k denotes the similarity between si

and sj for the kth feature. Let V = [v1, v2, . . . , vm] be a weight
vector acting as selectors for the similarities. The objective of
multisimilarity spectral clustering [55] is to divide these movie
shots into c clusters by finding n indicators which minimizes

m∑
k=1

n∑
i=1

n∑
j=1

v2
kwi,j;k

∥∥fi − fj
∥∥2 (10)

where fi ∈ R
c represent the cluster indicator variable for the

ith movie shot. We now incorporate a temporal continuity con-
straint within the above objective function to address temporal
cohesion of the shots. The constrained objective function is
given by

J =
m∑

k=1

n∑
i=1

n∑
j=1

v2
kwi,j;k

∥∥fi − fj
∥∥2

+ δ

m∑
k=1

n∑
i=1

n∑
j=1

n∑
l=1

v2
k

∣∣wi,j;k − wi,l;k
∣∣ϕjl
∥∥fi − fj

∥∥2 (11)

where δ is a weight parameter for the second term of the objec-
tive function and ϕjl accounts for temporal integrity between
movie shots j and l. The temporal integrity function must
satisfy the following properties while grouping the movie
shots.

1) ϕjl = 1, if | j − l| = 0, indicates that the same shot must
be in one cluster.

2) ϕjl → 0, if | j − l| → ∞, means that if two shots are
very far in time order, then the effect of one shot on
the other is negligible. In other words, grouping the first
and the last shot of a movie into one cluster is highly
unacceptable.

3) ϕjl increases when | j − l| becomes smaller, means that
neighboring shots that are close in time order to a spe-
cific shot, have more effect on clustering as compared to
further shots. We choose the following temporal integrity
function which satisfies the above properties:

ϕjl = e−| j−l|. (12)

This objective function is minimized under the constraint that
the weighted sum of vk

′s p-norm is normalized, that is

m∑
k=1

v p
k = 1; 1 ≤ p ≤ 2, vk ≥ 0. (13)

In addition, for satisfying normalized spectral clustering, we
require f TDf = 1, where D is the diagonal matrix with

its ith diagonal element being the sum of ith row of Wk.
Mathematically, that is expressed as

f TDf =
m∑

k=1

αkv2
k = 1 (14)

where αk = f TDf . The goal is to minimize (11) subject
to constraints (13) and (14). We construct the correspond-
ing unconstrained objective function by applying Lagrange
multipliers

Jλ1,λ2 =
m∑

k=1

n∑
i=1

n∑
j=1

v2
kwi,j;k

∥∥fi − fj
∥∥2

+ δ

m∑
k=1

n∑
i=1

n∑
j=1

n∑
l=1

v2
k

∣∣wi,j;k − wi,l;k
∣∣ϕjl
∥∥fi − fj

∥∥2

− λ1

(
m∑

k=1

v p
k − 1

)
− 2λ2

(
m∑

k=1

αkv2
k − 1

)
. (15)

Note that in (15), there are two sets of variables, indicators fi
and weights vk. A good strategy is to solve one set of variables
at a time while fixing the other set of variables [55].

Case 1: Weights vk are given; the goal is to determine indi-
cators fi. If the weights vk are given, the problem becomes a
standard spectral clustering problem and the similarities are
set as w(i, j) = ∑

k v2
kwi,j;k. Thus, the indicators fi can be

determined from the eigenvectors of the Laplacian matrix [56].
Case 2: Indicators fi are known; the goal is to find weights

vk. Let us first assume that indicators fi are given and fixed. By
taking partial derivative of (15) with respect to v p

k and setting
them to zero, we have

∂Jλ

∂v p
K

= 2

p
v2−p

k

×
⎛
⎜⎝

∑n
i=1

∑n
j=1 wi,j;k

∥∥fi − fj
∥∥2

+ δ
∑n

i=1
∑n

j=1
∑n

l=1

∣∣wi,j;k − wi,l;k
∣∣

∗ ϕjl
∥∥fi − fj

∥∥2 − 2λ2αk

⎞
⎟⎠− λ1 = 0.

(16)

For simplification, let

βk =
n∑

i=1

n∑
j=1

wi,j;k
∥∥fi − fj

∥∥2

+ δ

n∑
i=1

n∑
j=1

n∑
l=1

∣∣wi,j;k − wi,l;k
∣∣ϕjl
∥∥fi − fj

∥∥2
.

The solution becomes

vk =
(

λ1

2p−1

) 1
2−p

(βk − 2λ2αk)
1

2−p . (17)

It is difficult to solve (17) as vk is dependent on two variables
λ1 and λ2. So, we first solve for λ1 and λ2. Substituting the
above in (13), we obtain

λ1 =
(p

2

)−1
[

m∑
k=1

(βk − 2λ2αk)
−p
2−p

]−
(

2−p
p

)

. (18)



PANDA et al.: NYSTRÖM APPROXIMATED TEMPORALLY CONSTRAINED MULTISIMILARITY SPECTRAL CLUSTERING APPROACH 841

Furthermore, from (14) and (17), we have

(λ1)
2 =

(p

2

)−2
[

m∑
k=1

αk(βk − 2λ2αk)
−2
2−p

]−(2−p)

. (19)

Replacing λ1 in the above equation from (18), we have

[
m∑

k=1

(βk − 2λ2αk)
−p
2−p

]−2
(

2−p
p

)

=
[

m∑
k=1

αk(βk − 2λ2αk)
−2
2−p

]−(2−p)

. (20)

Note that (20) contains only one variable λ2. Thus, we
now have a 1-D search problem which can be solved by
Newton–Raphson method [57]. After finding λ2, we obtain
λ1 from (18). Finally, vk can be determined from (17). In our
current work, we set p = 1 [55] and m = 4 (four similar-
ity matrices). We have experimentally chosen δ = 0.5 for all
the video segments. This alternating process of determining
indicators fi and weights vk is repeated till the convergence is
reached.

As discussed in the theoretical foundations section, Nyström
extension can be applied to find the approximated eigenvec-
tors in spectral grouping. In the following section, we show the
application of Nyström extension for approximated eigenvec-
tor computation in multisimilarity spectral clustering of movie
shots. Let WT denote the combined matrix which can be rep-
resented as addition of individual scalar multiplied-similarity
matrices. Then, we can write

WT = v1WCS + v2WMS + v3WTS + v4WSS (21)

where (v1, v2, v3, v4 > 0)

WT = v1

[
ACS BCS

BT
CS CCS

]
+ v2

[
AMS BMS

BT
MS CMS

]

+ v3

[
ATS BTS

BT
TS CTS

]
+ v4

[
ASS BSS

BT
SS CSS

]
(22)

where ACS and BCS represent the pair-wise similarity matrix
between sampled movie shots and similarity matrix between
sampled shots and remaining movie shots. Using the properties
of matrix algebra [3]

(v1BCS + v2BMS + v3BTS + v4BSS)T

= v1BT
CS + v2BT

MS + v3BT
TS + v4BT

SS. (23)

The above equation can be represented as follows:

WT =
[

Ã B̃
B̃T C̃

]
(24)

where Ã = v1ACS + v2AMS + v3ATS + v4ASS, B̃ = v1BCS +
v2BMS + v3BTS + v4BSS, and C̃ = v1CCS + v2CMS + v3CTS +
v4CSS. Using Nyström extension, we approximate WT by ŴT

in the following manner:

ŴT =
[

Ã
B̃T

]
Ã−1[ Ã B̃

]
. (25)

As discussed earlier, the eigenvectors in Nyström approxi-
mated spectral clustering can be computed in two different

Algorithm 1 Spectral Grouping of Shots
Given n number of shots si, m similarity matrices between
sampled shots and all other shots (|AB| = m = 4), group the
shots into c clusters (number of scenes).
Procedure (si, m, c)
1: Initialize the weights vk = 1/m
2: Repeat
3: � Fix weights and find indicators fi�
4: Assume WT = ∑m

k=1 v2
kwi,j;k

5: Find approximated eigenvectors V2 . . . Vc+1 using
Nyström extension.

6: Indicator fi = the ith row of [V2 . . . Vc+1]
7: � Fix indicators fi and find weights vk�
8: Solve a 1-D search problem of λ2 in (20)
9: Obtain λ1 by substituting λ2 in (18)

10: Weight vk =
(

λ1p
2

) 1
2−p

(β − 2λ2αk)
−1
2−p

11: Until Convergence
12: Run K-means on f1, f2, . . . , fn to group the shots into

c clusters.
End Procedure

ways depending on the definiteness of Ã. In our movie scene
detection problem, the matrix Ã is positive definite. Hence, the
orthogonal approximate eigenvectors are obtained by

V̂ =
[

Ã
B̃T

]
Ã−1/2US∧−1/2

S (26)

where S = Ã + Ã−1/2B̃B̃T Ã−1/2 with eigen decomposition
S = US ∧S US. But, one of the most important aspects of
Nyström extension is sampling of shots to extrapolate the
complete grouping solution. For this purpose, we adopt ran-
dom sampling-based cross-validation approach to select the
landmark shots that will give low clusterability difference of
eigenvectors [43]. Now, we show all the steps of our spectral
clustering approach in Algorithm 1.

D. Cluster Sequence Analysis

Once the clustering algorithm has grouped the shots into c
clusters, a label is assigned to each shot according to the clus-
ter it belongs to. This shot cluster sequence is then analyzed
to detect the scene boundaries. A scene boundary exists when
two adjacent shot labels are different. The optimal number of
scenes (c∗) required for spectral grouping of shots is obtained
using MDL principle [58]. However, under-segmentation can
happen in the case where c < c∗, and over-segmentation in
the case c > c∗. Hence, to select more robust boundaries, we
perform the clustering repeatedly with number of clusters c
around the optimal number (c∗) and follow a majority voting
procedure as follows:

Vote(i) = 1

(2 × Tw) + 1

c=c∗+Tw∑
c=c∗−Tw

Boundary(c)(i) (27)

where Tw is the temporal window size and Boundary(i) =
1 if the ith shot is selected as scene boundary; and set to
zero otherwise. Please see Algorithm 2 in this connection.
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TABLE I
EVALUATION MOVIE DATASETS (SOURCE: INTERNET MOVIE DATABASE). THE TOTAL DURATION

OF THE TEST SET IS 11 H 33 MIN 17 S, CONTAINING TOTAL 10 656 VIDEO SHOTS

Algorithm 2 Cluster Sequence Analysis
Input: Temporal window size, Tw

Number of movie shots, n
Output: Final scene boundaries
1: Compute the optimal number of scenes (c∗) using

MDL principle.
2: For c = c∗ − Tw : c∗ + Tw
3: Cluster all the movie shots into c groups using Algo.1.
4: For i = 1 : n
5: Set Boundary(c)(i) = 1 if i-th and (i + 1)-th shot

are assigned to different cluster; set to zero
otherwise.

6: End For
7: End For
8: For i = 1 : n
9: Compute Vote(i) using (27).
10: End For
11: Assign final scene boundaries at shot i if

Vote(i) ≥ Tw+1
(2×Tw)+1 .

In experiments, the value of Tw is set as 4 [58]. The true (i.e.,
final) scene boundary is detected at shot i if Vote(i) is above
the threshold of 0.55 (i.e., 5 out of 9).

E. Computational Complexity

Now, we show the advantage of the proposed method by
analyzing its computational complexity. Let n be the total num-
ber of shots and ns be the number of Nyström sampled shots
(where ns << n). Following [43], we can write the Nyström
approximation takes O(n3

s ) + O(nns) operations to build one
similarity matrix. The time-complexity of spectral clustering
with n shots is O(n3). So, the overall complexity of our spec-
tral clustering method with Nyström sampling being used for
approximating the similarity matrices is: (O(n3

s ) + O(nns)) +
O(n3) = O(n3). Considering the post-processing part (clus-
ter sequence analysis), the total computational complexity of
our proposed method is O((2 ∗ Tw + 1) ∗ n3) = O(n3), where
Tw is the temporal window size and Tw << n. In this paper,
we have set Tw to 4 throughout the experiments. Please note
that if the Nyström approximation was not used, the complex-
ity of generating a single similarity matrix would have been:
O(n2) >> O(n3

s ) + O(nns), the complexity of the same with
the Nyström approximation. Usually computation of more than
one similarity matrices is necessary to achieve better cluster-
ing. For example, in this paper, we have used four similarity
matrices, namely, color, texture, motion, and semantic. With

the necessity to compute more similarity matrices for large
datasets like the movies, it is imperative that the computa-
tional benefit with the Nyström approximation is even more
pronounced.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the proposed method is analyzed and com-
pared with two recent graph-theoretic approaches [15], [24].
Five Hollywood movies (without commercials) from the
Internet movie database [59] (three of which are also used
in [24]) are chosen for performance evaluation (see Table I).
Chasanis et al. [15] and Sakarya et al. [24] have created their
own ground-truths. Since movie scene is somewhat a subjec-
tive concept and is a problem of general interest, we invite
five people from different backgrounds (two film study experts
and three graduate students) to create the ground-truths for us.
We compare each such ground truth with the algorithmically
detected result using F1 measure [13]–[15].

To determine if a detected scene is correct or not, the best
match method [14] is adopted with a sliding window of τ

shots as the tolerance factor. The detected scene boundary is
regarded as true positive if the offset is less than the tolerance
factor τ . We report here mean F1 value for each movie dataset.

A. Performance Evaluation of Different
Similarity Matrices

We first evaluate the efficiency of the proposed combination
of multiple similarities over a single similarity. The results are
shown in Table II. All the reported F1 measures are calculated
with tolerance factor τ = 4. An interesting observation is that
combination of color and edge similarity provides better scene
detection performance for Biographic/Drama movies (Video
ID #1, 3, 5) whereas the color and motion combination pro-
vides better detection accuracy for action movies (Video ID #2,
4). It can be seen from Table II that the proposed combination
of similarity measures (shown in bold) easily provides best
scene detection performance for all movie datasets indepen-
dent of their genre. We have used the value of the parameter
a [in (3)] as 0.1 [54]. We also show the effect of changing the
value of this control parameter a on different shot similari-
ties. From Fig. 3(a)–(d), it can be noticed that the F1 measure
changes only marginally with change in a, which indicates the
adopted form of the similarity measures are quite robust.

B. Performance Evaluation of Nyström Approximation

In this section, we make a comparative performance analysis
of our method with and without Nyström approximation based
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TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT SIMILARITY MEASURES. ALL THE REPORTED F1 MEASURES

ARE CALCULATED WITH TOLERANCE FACTOR τ = 4. BEST PERFORMANCES ARE SHOWN IN BOLD

Fig. 3. Effect of varying control parameter a in similarity matrices. As can be seen, F1 measure changes only marginally with change in a, which indicates
the adopted form of the similarity measures Are quite robust. (a) Visual similarity. (b) Texture similarity. (c) Motion similarity. (d) Semantic similarity.

TABLE III
PERFORMANCE COMPARISON WITH/WITHOUT NYSTRÖM APPROXIMATION. ALL THE

REPORTED F1 MEASURES ARE CALCULATED WITH TOLERANCE FACTOR τ = 4

on both execution time ratio and F1 measure. Our proposed
graph clustering-based movie scene segmentation method has
following computational steps.

1) Shot detection and representation.
2) Shot similarities computation.
3) Clustering methodology.
4) Scene boundaries determination step.

Steps 1) and 4) are independent of Nyström approximation
whereas steps 2) and 3) are dependent on the approxima-
tion. Motivated by [24], we show a comparative performance
analysis of this paper with and without Nyström approxima-
tion based on the execution time ratio over the minimum
value indicated by 1.0 [only steps 1) and 4) are included] in
Table III. The results given in Table III show that our method
with the Nyström approximation significantly reduces the exe-
cution time (mean value of 4.0 versus 11.46). This is due
to the fact that the complete grouping solution is efficiently
approximated using Nyström extension. The same table also
presents a comparative performance analysis with and without
Nyström approximation based on F1 measure. All the reported
F1 measures are calculated with tolerance factor τ = 4.
From Table III, we can conclude that the Nyström approxi-
mation substantially improves the execution time (mean value
decreases from 11.46 to 4.0 if we use it) and only marginally
affects the F1 value (mean value increases from 0.7599 to
0.7732 if we use it). This type of speedup (about threefold
in the present experiments) is highly important, where huge

TABLE IV
AVERAGE NYSTRÖM APPROXIMATION ERROR

amount of data like that of a movie needs to be processed.
We next examine the quality of the Nyström approxima-
tion by measuring their approximation errors in terms of
Frobenius norm of the difference similarity matrix with and
without Nyström approximation and report the average value
in Table IV. From the results, it can be observed that the
approximation errors are significantly low, which once again
validates the use of Nyström extension for the present prob-
lem. The proposed method on an average takes about 15 min
to detect the scene changes in the movie datasets in Table I
on a desktop PC with Intel core i5-2400 processor and 8GB
of DDR2 memory.

C. Performance Evaluation of Cluster Sequence Analysis

In this section, we present the effectiveness of our cluster
scene analysis step using Table V. The results in Table V
show that our proposed method performs better in presence
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TABLE V
IMPACT OF CLUSTER SCENE ANALYSIS. MEAN F1 VALUE INCREASES FROM 0.7047 TO 0.7599

TABLE VI
MEAN F1 PERFORMANCE COMPARISON WITH NN CLUSTERING AND A SPECTRAL FACTORIZATION-BASED GRAPH PARTITIONING ALGORITHM.

ALL THE REPORTED VALUES ARE COMPUTED USING ONLY COLOR FEATURE AND THE CLUSTER SCENE ANALYSIS STEP IS KEPT SAME FOR

ALL THE RESULTS. THE RESULTS CLEARLY INDICATE THE SUPERIORITY OF OUR CLUSTERING COMPARED TO BOTH NN CLUSTERING

AND SPECTRAL FACTORIZATION-BASED GRAPH PARTITIONING. BEST VALUES ARE SHOWN IN BOLD

of cluster scene analysis with a mean F1 value of 0.7599 as
compared to a mean F1 value of 0.7047 when no such step
is taken. The difference in result is due to the fact that the
number of scenes obtained using the MDL principle [58] can
result in over-segmentation or under-segmentation. Moreover,
obtaining the accurate number of scenes a priori using any
principle for a movie is a difficult task.

D. Performance Comparison With Other Methods

In this section, we make a comparative performance analy-
sis to evaluate the results of the proposed method. For that
reason we have implemented two state-of-the-art methods
presented in the literature. Both the works are based on graph-
theoretic approaches for video scene detection. The first work
is presented in [15]. This method computes visual similarity
between shots as the maximum color similarity among all pos-
sible pairs of their key-frames. The key-frames are extracted
using an improved version of spectral clustering algorithm,
where fast global k-means algorithm is used. This comprehen-
sive shot similarity calculation is not feasible for movie data
set. Moreover, shots are grouped into clusters using the same
spectral clustering, where the number of clusters is estimated
based on the magnitude of the eigenvalues of the similarity
matrix. Finally, a sequence alignment procedure was applied
over shot sequence labels to detect the scene boundaries.
However, determination of window size, threshold for global
minimum selection in scoring function profile, and the weight
parameter α is a tedious task. We have implemented and tested
this method using the same movie data set for different val-
ues of the above parameters. In our comparisons, we found
distinct values for each movie that provide the best perfor-
mance. It can be noticed that F1 measures reported in [15] are
in the range of 0.85–0.90 as the method is tested for small
duration video clips. But, it is not possible to get this range
of values for large movie datasets as there exist wide con-
tent variation across any movie due to various dynamics of
alternating sequences in addition to the movie editing effects.

The second method has been proposed in [24]. This method
clusters shots into groups taking into account both color and
motion similarity of video shots. Moreover, the temporal shot

similarity function is also used along with visual similarity
to cluster the shots into groups. This method is based on
the idea of finding dominant movie scene boundary using
dominant sets framework [24]. After determining the most
probable movie scene in the first round, two partitioning
strategies are examined to obtain the boundaries of the remain-
ing scenes: 1) a TBM and 2) an OBM. As reported by
Sakarya et al. [24], TBM is preferred over OBM from a
tradeoff between F-measure performance and computational
complexity. Hence, we have implemented and tested TBM
method using the same movie data set and human generated
ground truths. We set the parameters as r = 2.24, c = 7 and
different values of d for different movies [24]. It must be noted
that the F1 measures reported in [24] are different to the values
presented in our performance comparison as former F1 mea-
sures are according to the frame level comparison of clusters
and their ground truth results are not available to make a fair
comparison.

Table VII presents a comparative performance analysis
of our proposed method, methods in [15] and [24] with
varying tolerance factor (i.e., τ varied from 1 to 10). The
reported F1 measure values represent the average of F1
measures obtained from comparing the results of different
methods with the ground-truths of each movie dataset. From
Table VII, it is observed that our proposed method outperforms
both [15] and [24] even with low τ which indicates that the
proposed method is able to achieve more precise boundaries.
In sharp contrast to our results, the outputs of [15] and [24]
suffer from both over/under segmentation problems due to
inaccurate scene detections. From Table VII, we can conclude
by considering all values of the tolerance factor that the pro-
posed method clearly outperforms [15] and [24] in as many
as 46 out of a total of 50 cases.

In order to further demonstrate the superiority of our clus-
tering methodology, we have included comparisons with two
popular clustering approaches, namely, a graph partitioning
algorithm based on spectral factorization [60] and nearest
neighborhood (NN) [61] clustering. Only color feature is used
and the cluster scene analysis step is kept the same. Table VI
presents the mean F1 measure obtained by applying both the
approaches for five movies. The results clearly indicate that the
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TABLE VII
MEAN F1 MEASURE COMPARATIVE PERFORMANCE ANALYSIS OF DIFFERENT METHODS WITH VARYING TOLERANCE FACTOR.

PROPOSED METHOD OUTPERFORMS [15] AND [24] IN 46 OUT OF 50 CASES. BEST VALUES ARE SHOWN IN BOLD

TABLE VIII
PERFORMANCE COMPARISON WITH [15] AND [24] USING SAME SET OF FEATURES. OURS PERFORMS BEST IN TERMS F1 VALUES

AND AT THE SAME TIME IS ALSO FASTER AS CAN BE SEEN FROM THE EXECUTION TIME RATIOS

proposed method performs significantly better than the graph
partitioning algorithm and NN clustering for all the movie
segments.

E. Performance Comparison of Methods With Same
Similarity Measures

Boundaries between scenes in the previous sections are
determined by the Nyström approximated multisimilarity spec-
tral clustering. In order to explicitly verify the superiority
of our clustering methodology, we include a comparison of
our method with that of [15] and [24] using the same shot
similarity matrix. Table VIII shows a performance analy-
sis of our method using same shot similarity measures as
in [15] and [24]. Table VIII also represents a comparison of

these methods in terms of execution time ratio over the mini-
mum value indicated by 1.0 [only step 4) of Section III-B is
included]. The reason for only inclusion of step 4) instead
of both steps 1) and 4) as in Section III-B, is due to the
fact that only step 1) is common to all of the three com-
pared methods. Proposed method (C) uses only color similarity
as in [15], whereas proposed method (C + M) uses both
color and motion similarity as in [24]. The same shot detec-
tion and representation (i.e., the middle frame) are used in
the preprocessing steps for all the implementations. On con-
sidering the mean values of F1 measures in Table VIII, the
performance of proposed method (C) and [15] are close to
each other. However, proposed method (C + M) clearly
outperforms [24]. The reason for the small performance differ-
ence between proposed method (C) and Chasenis et al. [15] is
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due to the fact that both the methods are based on spectral clus-
tering. The superiority of our method is due to the formulation
of spectral clustering with temporal integrity constraint. On the
other hand, the reason for the superior performance over the
method by Sakarya et al. [24] is due the robustness of our clus-
tering strategy with temporal information. At the same time,
on considering the execution time ratio, our method performs
quite well as compared to both of the methods. Specifically,
our clustering strategy uses Nyström approximated eigenvec-
tors that substantially reduces the computational burden in
detecting precise scene boundaries from long duration movies.

IV. CONCLUSION

In this paper, we presented a novel method for high-level
segmentation of movies into scenes using Nyström approx-
imated multisimilarity spectral clustering with a temporal
integrity constraint. Multiple shot similarity matrices are used
to model the diverse characteristics of different types of movie
scenes. Comprehensive experimentations clearly indicate that
the superiority of the proposed method over some recently
published works. In future, we will focus on integration of
more extensive set of video features to further improve the
scene detection results. Another direction of future research
will be to assign semantic labeling to the detected movie
scenes for more effective movie navigation.

APPENDIX

In the following section, we will show the positive definite-
ness of combined matrix Ã.

1) Let X be a non empty set. A function (likewise for
matrix) K : X × X → R is called positive definite if
and only if it is symmetric, i.e., K(x, x

′
) = K(x

′
, x)

for all x, x
′ ∈ X and if for an arbitrary finite non-zero

vector c

CTKijC =
n∑

i,j=1

CiCjK
(
xi, xj

)
> 0 (28)

for x1, . . . , xn ⊆ X; C1, . . . , Cn ⊆ R.

2) Multiplication of a finite positive constant with a positive
definite function or matrix is also positive definite. In
other words, if K is positive definite then v ∗ K is also
positive definite (v > 0).

3) Exponential of a positive definite function is also posi-
tive definite, i.e., if K is positive definite, then exp(K)

is also positive definite.
Lemma 1: Individual similarity matrices WCS, WMS, WTS,

and WSS are positive definite [please see (9)].
Proof of Lemma 1:

WCS(i, j) = e−a∗ColorSim(i,j), a > 0

= e−a[1−∑m
h=1 min(Hi(h),Hj(h))]

= e−a+a
∑m

h=1 min(Hi(h),Hj(h))

= e−a · ea
∑m

h=1 min(Hi(h),Hj(h))

= v · ea
∑m

h=1 min(Hi(h),Hj(h)); v > 0.

The above equation is positive definite if∑m
h=1 min(Hi(h), Hj(h)) function is positive definite. The

function K(Hi, Hj) = ∑m
h=1 min(Hi(h), Hj(h)) is a positive

definite function or Mercers kernel. Hence, the matrix WCS
is positive definite. Similarly, it can be shown that other
similarity matrices are also positive definite.

Lemma 2: The combined similarity matrix Ã is positive
definite [please see (21)].

Proof of Lemma 2:

Ã = v1ACS + v2AMS + v3ATS + v4ASS.

Ã is positive definite iff CTÃC > 0, that is

CT(v1ACS + v2AMS + v3ATS + v4ASS)C > 0.

LHS of the inequality can also be written as

CT(v1ACS)C + CT(v2AMS)C + CT(v3ATS)C + CT(v4ASS)C.

Each individual component, CT(v1ACS)C > 0 (from
Lemma 1). Hence, Ã is positive definite.
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