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Existing approaches for person re-identification have concentrated on either designing the best feature
representation or learning optimal matching metrics in a static setting where the number of cameras
are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re-
identification problem, where one or multiple new cameras may be temporarily on-boarded into an ex-
isting system to get additional information or added to expand an existing network. To address such a
very practical problem, we propose a novel approach for adapting existing multi-camera re-identification
frameworks with limited supervision. First, we formulate a domain perceptive re-identification method
based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt
with newly introduced target camera(s), without requiring a very expensive training phase. Second, we
introduce a transitive inference algorithm for re-identification that can exploit the information from best
source camera to improve the accuracy across other camera pairs in a network of multiple cameras.
Third, we develop a target-aware sparse prototype selection strategy for finding an informative subset of
source camera data for data-efficient learning in resource constrained environments. Our approach can
greatly increase the flexibility and reduce the deployment cost of new cameras in many real-world dy-
namic camera networks. Extensive experiments demonstrate that our approach significantly outperforms

state-of-the-art unsupervised alternatives whilst being extremely efficient to compute.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Person re-identification (re-id), which addresses the problem
of matching people across non-overlapping views in a multi-
camera system, has drawn a great deal of attention in the last
few years [1]. Much progress has been made in developing meth-
ods that seek either the best feature representations (e.g., [2,3])
or propose to learn optimal matching metrics (e.g., [4,5]). While
they have obtained reasonable performance on commonly used
benchmark datasets, we believe that these approaches have not
yet considered a fundamental related problem: Given a camera net-
work where the inter-camera transformations/distance metrics have
been learned in an intensive training phase, how can we on-board
new camera(s) into the installed system with minimal additional ef-
fort? This is an important problem to address in many realistic re-
identification scenarios, where one or multiple new cameras may
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be temporarily inserted into an existing system to get additional
information.

To illustrate such a problem, let us consider a scenario with A/
cameras for which we have learned the “optimal” pair-wise dis-
tance metrics, so providing high re-identification accuracy for all
camera pairs. However, during a particular event, a new camera
may be temporarily introduced to cover a certain related area that
is not well-covered by the existing network of A cameras (see
Fig. 1 for an example). Despite the dynamic and open nature of
the world, almost all work in re-identification assume a static and
closed world model of the re-id problem where the number of
cameras are fixed in a network. Given a newly introduced cam-
era, traditional re-id methods will try to relearn the inter-camera
transformations/distance metrics using a costly training phase. This
is impractical since labeling data in the new camera and then
learning transformations with the others is time-consuming, and
defeats the entire purpose of temporarily introducing the addi-
tional camera. Thus, there is a pressing need to develop unsuper-
vised approaches for integrating new camera(s) into an existing re-
identification framework with limited supervision.
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How can we on-board one or multiple camera(s) with same or
different sets of people into the existing re-identification
framework with no or minimal additional supervision?

Fig. 1. Consider an existing network with two cameras ¢; and C; where we have
learned a re-identification model using pair-wise training data from both of the
cameras. During the operational phase, two new cameras C3 and C4 are introduced
to cover a certain area that is not well covered by the existing 2 cameras. Most
of the existing methods do not consider such dynamic nature of a re-id model. In
contrast, we propose an unsupervised approach for on-boarding new camera(s) into
the existing re-identification framework by exploring: what is the best source cam-
era(s) to pair with the new cameras and how can we exploit the best source camera(s)
to improve the matching accuracy across the other existing cameras?

Domain adaptation [6] has recently been successful in many vi-
sion problems such as object recognition [7,8] and activity classifi-
cation [9] with multiple classes or domains. The main objective is
to scale learned systems from a source domain to a target domain
without requiring prohibitive amount of training data in the target
domain. Considering newly introduced camera(s) as target domain,
we pose an important question in this paper: Can unsupervised do-
main adaptation be leveraged upon for on-boarding new camera(s)
into person re-identification frameworks with limited supervision?

Unlike object recognition [7], domain adaptation for person re-
identification has additional challenges. A central issue in domain
adaptation is which source to transfer from. When there is only one
source of information available which is highly relevant to the task
of interest, then domain adaptation is much simpler than in the
more general and realistic case where there are multiple sources
of information of greatly varying relevance. Re-identification in a
dynamic network falls into the latter, more difficult case. Specifi-
cally, given multiple source cameras (already installed) and a tar-
get camera (newly introduced), how can we select the best source
camera to pair with the target camera? The problem can be easily
extended to multiple additional cameras being introduced.

Moreover, once the best source camera is identified, how can
we exploit this information to improve the re-identification accuracy
of other camera pairs? For instance, let us consider ¢; being the
best source camera for the newly introduced camera C3 in Fig. 1.
Once the pair-wise distance metric between C; and C3 is obtained,
can we exploit this information to improve the re-identification ac-
curacy across (C;-C3)? This is an especially important problem be-
cause it will allow us to now match data in the newly inserted
target camera C3 with all the previously installed cameras.

Given a network with thousands of cameras involving large
number of images, finding the best source camera for a newly in-
troduced camera can involve intensive computation of the pair-
wise kernels over the whole set of images. Thus, it is important
to automatically select an informative subset of the source data to
pair with the target domain data. Specifically, can we select an in-
formative subset of source camera data that share similar character-
istics as target camera data and use those for model adaptation in
resource constrained environments? This is crucial to increase the
flexibility and decrease the deployment cost of newly introduced
cameras in large-scale dynamic camera networks.

1.1. Overview of solution strategy

We first propose an unsupervised approach based on geodesic
flow kernel [8,10] that can effectively find the best source cam-
era to adapt with a target camera. Given camera pairs, each con-
sisting of 1 (out of A') source camera and a target camera, we
first compute a kernel over the subspaces representing the data of
both cameras and then use it to find the kernel distance across the
source and target camera. Then, we rank the source cameras based
on the average distance and choose the one with lowest distance
as the best source camera to pair with the target camera. This is
intuitive since a camera which is closest to the newly introduced
camera will give the best re-identification performance on the tar-
get camera and hence, is more likely to adapt better than others. In
other words, a source camera with lowest distance with respect to
a target camera indicates that both of the sensors could be similar
to each other and their features may be similarly distributed. Note
that we learn the kernel with the labeled data from the source
camera only.

We then introduce a transitive inference algorithm for per-
son re-identification that can exploit information from best source
camera to improve accuracy across other camera pairs. Remind-
ing the previous example in Fig. 1 in which source camera C; best
matches with target camera C3, our proposed transitive algorithm
establishes a path between camera pair (C; —C3) by marginaliza-
tion over the domain of possible appearances in best source cam-
era Cy. Specifically, ¢; plays the role of a “connector” between C,
and c3. Experiments show that this approach consistently increases
the overall re-identification accuracy in multiple networks by im-
proving matching performance across camera pairs, while exploit-
ing side information from best source camera.

Moreover, we also propose a source-target selective adaptation
strategy that uses a subset of source camera data instead of all
existing data to compute the kernels for finding the best source
camera to pair with a target camera. Our key insight is that not
all images in a source camera are equally effective in terms of
adaptability and hence using an informative subset of images from
the existing source cameras whose characteristics are similar to
those of the target camera can well adapt the models in resource
constrained environments. We develop a target-aware sparse pro-
totype selection strategy using ¢,;-norm optimization to select a
subset of source data that can efficiently describe the target set.
Experiments demonstrate that our source-target selective learning
strategy achieves the same performance as the full set while only
using about 30% of images from the source cameras. Interestingly,
our approach with prototype selection outperforms the compared
methods that use all existing source data by a margin of about 8%-
10% in rank-1 accuracy with only requiring about 10% of source
camera data while introducing new cameras.

1.2. Contributions

We address a novel, and very practical problem in this paper—
how to add one or more cameras temporarily to an existing
network and exploit it for person re-identification, without also
adding a very expensive training phase. Towards solving this prob-
lem, we make the following contributions: (i) an unsupervised re-
identification approach based on geodesic flow kernel that can find
the best source camera to adapt with newly introduced target cam-
era(s) in a dynamic camera network; (ii) a transitive inference al-
gorithm to exploit side information from the best source camera to
improve the matching accuracy across other source-target camera
pairs; (iii) a target-aware sparse prototype selection strategy using
£31-norm optimization to select an informative subset of source
camera data for data-efficient learning in resource constrained en-
vironments; (iv) rigorous experiments validating the advantages
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of our approach over existing alternatives on multiple benchmark
datasets with variable number of cameras.

2. Related work

Person re-identification has been studied from different per-
spectives (see [1] for a recent survey). Here, we focus on some
representative methods closely related to our work.

Supervised Re-identification. Most existing person re-
identification techniques are based on supervised learning. These
methods either seek the best feature representation [2,3,11,12] or
learn discriminant metrics/dictionaries [13-17] that yield an
optimal matching score between two cameras or between a
gallery and a probe image. Recently, deep learning methods
have shown significant performance improvement on person
re-id [18-24]. Combining feature representation and metric learn-
ing with an end-to-end deep neural networks is also a recent
trend in re-identification [25-27]. Considering that a modest-
sized camera network can easily have hundreds of cameras,
these supervised re-id models will require huge amount of la-
beled data which are difficult to collect in real-world settings.
In an effort to bypass tedious labeling of training data in su-
pervised re-id models, there has been recent interest in using
active learning for labeling examples in an interactive manner
[28-31]. However, all these approaches consider a static camera
network unlike the problem domain we consider.

Unsupervised Re-identification. Unsupervised learning models
have received little attention in person re-identification because of
their weak performance on benchmarking datasets compared to
supervised methods. Representative methods along this direction
use either hand-crafted appearance features [32,33] or saliency
statistics [34] for matching persons without requiring huge amount
of labeled data. Dictionary learning based methods have also been
utilized in an unsupervised setting [35,36]. Recently, Generative
Adversarial Networks (GAN) has also been used in semi-supervised
settings [37,38]. Although being scalable in real-world settings,
these approaches have not yet considered the dynamic nature of
the re-identification problem, where new cameras can be intro-
duced at any time to an existing network.

Open World Re-Identification. Open world recognition has
been introduced in [39] as an attempt to move beyond the static
setting to a dynamic and open setting where the number of train-
ing images/classes are not fixed in recognition. Recently there have
been few works in person re-identification [40,41] by assuming
that gallery and probe sets contain different identities of persons.
Unlike such approaches, we consider another yet important aspect
of open world person re-identification where the camera network
is dynamic and the system has to incorporate a new camera with
minimal additional effort.

Domain Adaptation. Domain adaptation [6], which aims to
adapt a source domain to a target domain, has been success-
fully used in many areas of computer vision, e.g., object classifi-
cation, and action recognition. Despite its applicability in classical
vision tasks, domain adaptation for re-identification still remains
as a challenging and under addressed problem. Recently, domain
adaptation for re-id has begun to be considered [42-44]|. However,
these studies consider only improving the re-identification perfor-
mance in a static camera network with fixed number of cameras.
Furthermore, most of these approaches learn supervised models
using labeled data from the target domain.

This paper has significant differences with our preliminary
work in [45]. First, we develop a target-aware sparse prototype se-
lection strategy for selecting a subset of source camera data to pair
with a target camera while computing kernels (Section 3.4). This
is especially an important problem as it will increase the flexibility
and decrease the deployment cost of newly introduced cameras in

many real world dynamic camera networks. Second, we extend our
approach to more realistic scenarios where multiple cameras can
be introduced to the network at the same time and show the ef-
fectiveness of our approach in a large-scale network of 16 cameras
(Section 3.5). We also consider different identities of person ap-
pearing in the newly introduced camera as in many real world set-
tings (Section 3.6). Third, we conduct comprehensive experiments
to analyze the effect of feature representation and subspace di-
mension on the re-identification performance along with new ex-
periments involving large number of images and cameras, different
sets of people in target camera and model adaptation with proto-
type selection for resource-constrained environments (Section 4).

3. Proposed methodology

To on-board new camera(s) into an existing person re-
identification framework, we first formulate an unsupervised ap-
proach based on geodesic flow kernel to find the best source cam-
era (Section 3.2) and then propose a transitive inference algorithm
to exploit information from the best source camera for improv-
ing matching accuracies across other source-target camera pairs
(Section 3.3). Next, we describe the details on our target-aware
sparse prototype selection strategy to select an informative subset
of source camera data in Section 3.4.

3.1. Initial setup

Our proposed framework starts with an installed camera net-
work where the discriminative distance metrics between each
camera pairs is learned using a off-line intensive training phase.
Let there be N cameras in a network and the number of possible
camera pairs is (3/) Let {(xf‘,xf‘)}{ll be a set of training samples,
where x;“ € RP represents feature representation of a training sam-
ple from camera view 4 and xiB € RP represents feature represen-
tation of the same person in a different camera view 3.

Given the training data, we follow KISS metric learning
(KISSME) [46] and compute the pairwise matrices such that dis-
tance between images of the same individual is less than distance
between images of different individuals. The basic idea of KISSME
is to learn the Mahalanobis distance by considering a log likeli-
hood ratio test of two Gaussian distributions. The likelihood ratio
test between dissimilar pairs and similar pairs can be written as

1 1T -1y
2, &XP(—3Xi; X5 X))

R(x{, x?) = log

(1)

1 Tyl S — 1y
aexp(—jxi].ES Xij)

where Xjj =le4 7X5?, Cp = ‘/27T|ED|, Cs = \/27T|Es|, ¥p and Xg
are covariance matrices of dissimilar and similar pairs respectively.
With simple manipulations, (1) can be written as R(x{‘, x?) =
X[;Mx;j, where M=¥;' — £, is the Mahalanobis distance be-
tween covariances associated to a pair of cameras. We perform an
Eigen-analysis to ensure M € RP*D is positive semi-definite [46].

Note that our approach is agnostic to the choice of metric learn-
ing algorithm used to learn the optimal metrics across camera
pairs in an existing network. We adopt KISSME in this work since
it is simple to compute and has shown to perform satisfactorily on
the person re-identification problem.

3.2. Discovering the best source camera

Objective. Given an existing camera network where optimal
camera pair-wise matching metrics are computed using the above
training phase, our first objective is to select the best source cam-
era which has the lowest kernel distance with respect to the newly
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inserted camera. Towards this, we adopt an unsupervised strat-
egy based on geodesic flow kernel [8,10] to compute the distances
without requiring any labeled data from the new cameras.

Approach Details. Our approach consists of the following steps:
(i) compute geodesic flow kernels between the new (target) cam-
era and other existing cameras (source); (ii) use the kernels to de-
termine the distance between them; (iii) rank the source cameras
based on distance with respect to the target camera and choose
the one with the lowest as best source camera.

Let {xs}¥ be the N source cameras and X7 be the newly
introduced target camera. To compute the kernels in an unsuper-
vised way, we extend a previous method [10] that adapts classifiers
in the context of object recognition to the re-identification in a dy-
namic camera network. The main idea of our approach is to com-
pute the low-dimensional subspaces representing data of two cam-
eras (one source and one target) and then map them to two points
on a Grassmanian. Intuitively, if these two points are close by on
the Grassmanian, then the computed kernel would provide high
matching performance on the target camera. In other words, both
of the cameras could be similar to each other and their features
may be similarly distributed over the corresponding subspaces. For
simplicity, let us assume we are interested in computing the kernel
matrix K57 e RP*D between the source camera XS and a newly in-
troduced target camera X7. Let &5 € RP*? and £7 < RP*? denote
the d-dimensional subspaces, computed using Partial Least Squares
(PLS) and Principal Component Analysis (PCA) on the source and
target camera, respectively. Note that we can not use PLS on the
target camera since it is a supervised dimension reduction tech-
nique and requires label information for computing the subspaces.

Given both of the subspaces, the closed loop solution to the
geodesic flow kernel across two cameras is defined as

1
XK = [ @) W @) dy )

where x;.s and x}' represent feature descriptor of ith and jth sample
in source and target camera respectively. ¥ (y) is the geodesic flow
parameterized by a continuous variable y € [0, 1] and represents
how to smoothly project a sample from the original D-dimensional
feature space onto the corresponding low dimensional subspace.
The geodesic flow 1(y) can be defined as [10],
XS ify=0
vy =147 ify=1 3)
XS (y) — ZthV,(y) otherwise
where &5 e RP*(P-9) is the orthogonal matrix to #° and
Uy, V1,Uy, Vy are given by the following pairs of SVDs,

XSTAT = PT, ST AT =~y PT (4)
With the above defined matrices, KS7 can be computed as

- - uTXsT
XS XS 1
K = [ e o “2}9 ul s’ (5)
. in(20; . 0:)—
diag[1 + %] dlag[%ei‘)”]

where G = and [6;]4, rep-

diag[ (cos(gg:)—U] diag[l _ sinz(;iei)]
resents the principal angles between source and target camera.
Once we compute all pairwise geodesic flow kernels between a
target camera and source cameras using (5), our next objective is
to find the distance across all those pairs. A source camera which
is closest to the new camera is more likely to adapt better than
others. We follow [47] to compute distance between a target and
source camera pair. Specifically, given a kernel matrix KS7, the dis-
tance between data points of a source and target camera is defined
as

T T T
D7 (x7, x]) = x7 K7x7 +x] K¥7x] —2x7 K7 x] (6)

where DS7 e R™*™ represents the kernel distance matrix defined
over a source and target camera. ns and n; represent the number
of images in source and target camera respectively. We compute
the average of D57 and consider it as the distance between two
cameras. Finally, we chose the one that has the lowest distance a
best source camera to pair with the newly introduced camera.

Remark 1. Note that we do not use any labeled data from the tar-
get camera to either compute the geodesic flow kernels in (5) or
the kernel distance matrices in (6). Hence, our proposed approach
can be applied integrate new cameras in a large-scale camera net-
work with minimal additional effort.

Remark 2. We assume that the newly introduced camera will be
close to at least one of the installed ones since we consider them
to be operating in the same time window with same set of peo-
ple appear in all camera views, as in most prior works except the
work in [40]. However, our proposed adaptation approach is not
limited to this constrained setting as we compute the view simi-
larity in a completely unsupervised manner and hence can be eas-
ily applied in real-world settings where different sets of people
appear in different camera views. To the best of our knowledge,
this is first work which can be employed in fully open world re-
identification systems considering both dynamic network and dif-
ferent identity of persons across cameras (see illustrative experi-
ments in Section 4.7).

Remark 3. We also assume that person detections are available
apriori before learning the re-identification models. However, in
the dynamic environment addressed in this paper an important is-
sue is the person detector for which the new camera could be even
more challenging than for the re-id algorithm. Thus, it is critical to
jointly adapt the person detectors and re-identification models for
optimal performance in real world dynamic camera networks-we
leave this as an interesting future work.

3.3. Transitive inference for re-identification

Objective. In the previous section we have presented an unsu-
pervised approach for finding best source camera to pair with the
target camera. Once the best source camera is identified, another
question that remains in adapting models is: can we exploit the
best source camera information to improve the re-identification accu-
racy across other camera pairs? Specifically, our objective is to ex-
ploit KS*7 and pair-wise optimal metrics learned in Section 3.1 to
improve the matching accuracies of the target camera in a
network. -

Approach Details. Let {MY };.,”]',:Lk j be the optimal pair-
wise metrics learned in a network of A cameras following
Section 3.1 and S&* be the best source camera for a newly intro-
duced target camera 7 following Section 3.2.

Motivated by the effectiveness of Schur product (a.k.a.
Hadamard product) for improving the matrix consistency and reli-
ability in multi-criteria decision making [48], we develop a simple
yet effective transitive algorithm for exploiting information from
the best source camera. Our problem naturally fits to such decision
making systems since our goal is to establish a path between two
cameras via the best source camera. Given the best source camera
S*, we compute the kernel matrix between remaining source and
target camera as follows,

K7 =M o K57, V[SIY,, S#8* (7)

where K57 € RP*D represents the updated kernel matrix between
source camera S and target camera 7 by exploiting information
from best source camera S*. The operator ® denotes Schur prod-
uct of two matrices. Eq. (7) establishes an indirect path between
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camera pair (S, 7) by marginalization over the domain of possi-
ble appearances in best source camera S*. In other words, camera
S* plays a role of connector between the target camera 7 and all
other source cameras.

Summarizing, to incorporate new camera(s) in an existing net-
work, we use the kernel matrix K5*7 in (5) to obtain the re-id ac-
curacy across the new camera and best source camera, whereas we
use the updated kernel matrices, computed using (7) to find the
matching accuracy across the target camera and remaining source
cameras in an existing network.

3.4. Learning kernels with prototype selection

Objective. For many applications with limited computation and
communication resources, there is an imperative need of methods
that could extract an informative subset from the source camera
data for computing the kernels instead of all existing data. Thus,
our main objective in this section is to develop a prototype selec-
tion strategy for finding a subset of source camera data that share
similar characteristics as the target camera and then use those for
discovering the best source camera in Section 3.2.

Approach Details. Motivated by sparse subset selection [49],
we develop an efficient optimization framework to extract a sparse
set of source camera images that are informative about the given
source camera as well as informative about the target camera. We
formulate the following objective function,

1
min =
ZSeRnsxns ZT Rt <Nt 2

(12515 + 127 121) (8

where o >0 balances the penalty between errors in the re-
construction of source camera data X*eRP*™ and errors in
the reconstruction of target camera data X7 e R™s*%, [| 25|51 =
Y21 11Z5112 and || 25][; is the £;-norm of the ith row of Z5. A >0
is a sparsity regularization parameter.

The objective function is intuitive: minimization of (8) favors
selecting a sparse set of prototypes that simultaneously recon-
structs the source camera data &* via 2%, as well as the target
camera data X7 via 27, with high accuracy. Specifically, rows in
ZS provide information on relative importance of each image in
describing the source camera X*, while rows in X7 give informa-
tion on relative importance of each image in A® in describing tar-
get camera X7 . Given the two sparse coefficient matrices, our next
goal is to select a unified set of images from source camera that
share similar characteristics with target camera. To achieve this, we
propose to minimize the following objective function:

1

: s s =512 T s 2T 112
min 2 (12 - B 2ZIE + a8 - 227 })

A 2125120 + 127 Ml21) + Bl Zcl |21 st 2 =[2°127]  (9)

where ¢,;-norm on the consensus matrix Z¢ € ns x (ns +n) en-
ables z5 and 27 to have the similar sparse patterns and share the
common components. In each round of the optimization, the up-
dated sparse coefficient matrices in the former rounds can be used
to regularize the current optimization criterion. Thus, it can un-
cover the shared knowledge of 25 and Z7 by suppressing irrele-
vant images that are less effective in terms of adaptability to the
newly introduced camera.

Optimization. Since problem (9) is non-smooth involving mul-
tiple ¢,1-norms, it is difficult to optimize directly. Motivated by the
effectiveness of Half-quadratic optimization [50], we devise an iter-
ative algorithm to solve (9) by minimizing its augmented function
alternatively as shown in Algorithm 1. More details on the opti-
mization are included in the supplementary material.

2
(I12° = 25257 + el A7 — 2527 ||7)

Algorithm 1 Algorithm for Solving Problem (9).

Input: Feature matrices X° and X7 ;Parameters o, A, B, set t =0
Initialize 25 and 27 randomly, set Z. = [25|27]
Output: Optimal sparse coefficient matrix Z.
while not converged do
1. Compute Pf,]Qf and R! as: :

Qi = ,
21127113 + €

i =

—
2 ||z,.sl||2 Te
Ri=
2/l12il15 + €
2. Compute 25! and 27! as:
-1
25 = (XTAS + 24P +2BR) AsTas
-1
2T = (aXSTAS +20Q + 28R) axsT a7
3. Compute 201 as: zi+1= [zst+1 | 271,
4.t=t+1;
end while

Once the problem (9) is solved, we first sort the source cam-
era images by decreasing importance according to the ¢, norms
of the rows of Z.. To summarize, we first learn the pair-wise ker-
nels across all the unlabeled target camera data and selected pro-
totypes from the source camera to discover the best camera as in
Section 3.2. Second, we adopt the same transitive inference algo-
rithm mentioned in Section 3.3 to exploit the information from the
best source camera to improve the person re-identification accu-
racy across remaining source-target camera pairs.

3.5. Extension to multiple newly introduced cameras

Our approach is not limited to a single camera and can be eas-
ily extended to even more realistic scenarios where multiple cam-
eras are introduced to an existing network at the same time. Given
multiple newly introduced cameras, one can follow two different
strategies to adapt re-identification models in dynamic camera net-
works. Specifically, one can easily find a common best source cam-
era based on lowest average distance to pair with all the new cam-
eras or multiple best source cameras, one for each target camera,
in an unsupervised way similar to the above approach (see exper-
iments in Section 4.3).

3.6. Extension to semi-supervised adaptation

Although our framework is designed for unsupervised adapta-
tion of re-identification models, it can be easily extended if labeled
data from the newly introduced camera become available. Specif-
ically, the label information from target camera can be encoded
while computing subspaces. That is, instead of using PCA for es-
timating the subspaces, we can use Partial Least Squares (PLS) to
compute the discriminative subspaces on the target data by ex-
ploiting the labeled information. PLS has shown to be effective in
finding discriminative subspaces by projecting labeled data into a
common subspace [51]. This essentially leads to semi-supervised
adaptation in a camera network (see experiments in Section 4.6).

4. Experiments

In this section, we evaluate the performance of our approach by
performing several experiments on multiple benchmark datasets.

4.1. Datasets and settings

Datasets. We conduct experiments on five different bench-
mark datasets to verify the effectiveness of our framework,
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namely WARD [52], RAID [53], SAIVT-SoftBio [54], Shin-
puhkan2014 [55] and Market-1501 [56]. The number of cameras
in WARD, RAID and SAIVT-SoftBio are 3, 4, and 8 respectively.
Shinpuhkan2014 dataset with 16 cameras is one of the largest
publicly available dataset in terms of number of cameras, while
the Market-1501 dataset is one of the largest dataset in terms of
number of images containing 32,668 images across 6 cameras.
Since Market-1501 dataset is not designed for camera pair-wise
re-identification, we pre-process it according to our experi-
mental setting and choose 605 persons who are present across
all cameras. More details on the datasets are available in the
supplementary material.

Feature Extraction and Matching. The feature extraction stage
consists of extracting Local Maximal Occurrence (LOMO) fea-
ture [57] for person representation. The descriptor has 26,960 di-
mensions. We apply principal component analysis to reduce the
dimensionality to 100 in all our experiments, as in [46]. With-
out low-dimensional feature, it is computationally infeasible to in-
verse covariance matrices as discussed in [46]. We use kernel dis-
tance [47] (Eq. (6)) to compute both distance between cameras and
matching scores.

Performance Measures. We show results using Cumulative
Matching Characteristic (CMC) curves and normalized Area Under
Curve (nAUC) values, as is common practice in re-identification
literature. CMC curve is a plot of recognition performance versus
ranking score and represents the expectation of finding correct
match in the top k matches. nAUC gives an overall score of how
well a re-id method performs irrespective of the dataset size.

Experimental Settings. All the images for each dataset are nor-
malized to 128 x 64 for being consistent with the evaluations car-
ried out by state-of-the-art methods [3,33,53]. Following the liter-
ature [46,53,57], the train and test set are kept disjoint by picking
half of the available data for training set and rest of the half for
testing. We repeated each task 10 times by randomly picking 5 im-
ages from each identity both for train and test time. The subspace
dimension for all the possible combinations are kept 50.

Compared Methods. We compare our approach with both un-
supervised and supervised alternatives as follows.

(a) Unsupervised Methods. We compare our approach with sev-
eral unsupervised alternatives which fall into two categories:
(i) hand-crafted feature-based methods including CPS [33] and
SDALF [3], (ii) two domain adaptation based methods (Best—-GFK
and Direct-GFK) based on geodesic flow kernel [10]. For
Best—-GFK baseline, we compute the re-id performance of a cam-
era pair by applying the kernel matrix, KS'7 computed between
best source and target camera [10], whereas in Direct-GFK base-
line, we use the kernel matrix computed directly across source
and target camera using (5). The purpose of comparing with

Cumulative Matching Characteristic (CMC)

Average over all Camera Pairs while Camera 1 as Target (Best Camera - Camera 3) Average over all Camera P:
00 i "

Cumulative Matching Characteristic (CMC)
airs while Camera 2 as Target (B

Best-GFK is to show that the kernel matrix computed across the
best source and target camera does not produce optimal re-id per-
formance in computing matching performance across other source
cameras and the target camera. On the other hand, the purpose
of comparing with Direct-GFK baseline is to explicitly show the
effectiveness of our transitive algorithm in improving re-id perfor-
mance in a dynamic camera network.

We use publicly available codes for CPS and SDALF and tested
on our experimented datasets. We use the same features as the
proposed one and kept the parameters same as mentioned in
the published works. We also implement both Best-GFK and
Direct-GFK baselines under the same experimental settings to
have a fair comparison with our proposed method.

(b) Supervised Methods. We compare with several supervised al-
ternatives which fall into two categories: (i) feature transforma-
tion based methods including FT [11], ICT [58], WACN [52], (ii)
metric learning based methods including KISSME [46], LDML [59],
XQDA [57] and MLAPG [15]. Our model can operate with any initial
network setup and hence we show our results with both KISSME
and Logistic Discriminant-based Metric Learning (LDML) [59], de-
noted as Ours-K and Ours-L, respectively. Note that we could
not compare with recent deep learning based methods as they are
mostly specific to a static setting and also their pairwise camera
results are not available on the experimented datasets. We did not
re-implement such methods in our dynamic setting as it is very
difficult to exactly emulate all the implementation details.

To report existing feature transformation based methods results,
we use prior published performances from [53]. For metric learn-
ing based methods, we use publicly available codes and test on our
experimented datasets.

4.2. Re-identification by introducing a new camera

Goal. The main goal of this experiment is to analyze (a) the
performance of our unsupervised approach while finding the best
source camera to pair with the target camera (Section 3.2) and
(b) performance of our transitive inference approach for exploit-
ing the information from best source camera to improve the re-
identification accuracy of other camera pairs? (Section 3.3)

Implementation Details. We considered one camera as newly
introduced target camera and all the other as source cameras. We
considered all the possible combinations for conducting experi-
ments. We first pick which source camera matches best with the
target one, and then use the proposed transitive algorithm to com-
pute the re-id performance across remaining camera pairs.

Results. Fig. 2 show the results for all possible combinations
on the 3 camera WARD dataset, whereas Fig. 3 shows the aver-
age performance over all possible combinations by inserting one
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Fig. 2. CMC curves for WARD dataset with 3 cameras. Plots (a, b, c) show the performance of different methods while introducing camera 1, 2 and 3 respectively to a

dynamic network. Please see the text in Section 4.2 for the analysis of the results.
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Fig. 3. CMC curves averaged over all target camera combinations, introduced one at a time. (a) Results on RAID dataset with 4 cameras (b) Results on SAVIT-SoftBio dataset

with 8 cameras, and (c) Results on Market-1501 dataset with 6 cameras.
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Fig. 4. Effectiveness of our transitive algorithm in person re-identification on (a) WARD and (b) SAIVT-SoftBio datasets. Top row: Our matching result using the transitive
algorithm. Middle row: matching the same person using Best-GFK. Bottom row: matching the same person using Direct-GFK. Visual comparison of top 10 matches
shows that Ours perform best in matching persons across camera pairs by exploiting information from the best source camera. More qualitative results are included in the

supplementary material. Best viewed in color.

camera on RAiD, SAIVT-SoftBio and Market-1501 datasets respec-
tively. The following observations can be made from the figures:
(i) the proposed framework for re-identification consistently out-
performs all compared unsupervised methods on all datasets by a
considerable margin, including the Market-1501 dataset with sig-
nificantly large number of images and person identities. (ii) among
the alternatives, CPS is the most competitive. However, the gap
is still significant due to the two introduced components working
in concert: discovering the best source camera and exploiting its
information for re-identification. The rank-1 performance improve-
ments over CPS are 23.44%, 24.50%, 9.98% and 2.85% on WARD,
RAID, SAIVT-SoftBio and Market-1501 datasets respectively. (iii)
Best—-GFK works better than Direct-GFK in most cases, sug-
gesting that kernel computed across the best source camera and
target camera can be applied to find the matching accuracy across
other camera pairs. (iv) Finally, the performance gap between our
method and Best-GFK (maximum improvement of 17% in nAUC
on RAID) shows the effectiveness of our transitive algorithm in ex-
ploiting information from the best source camera while comput-
ing re-identification accuracies across different source-target cam-
era pairs (see Fig. 4 for some qualitative examples).

We also compare our approach with a CNN-based deep learn-
ing method (ResNet-50 [60] classifier) on SAIVT-SoftBio dataset.
We train the network in identification setting and fine-tune from
the ImageNet pre-trained model using only source camera images
(without any labeled images from the target camera). Once the
model is finetuned, we evaluate re-identification using the learned
feature representations. Our approach performs significantly bet-

ter than the ResNet-50 baseline (Rank-1: 24.92% vs 21.67%) which
once again suggests that our approach is more effective by exploit-
ing information from best source camera via a transitive inference.
We believe the low performance of ResNet-50 baseline is due to
lack of enough labeled data as well as lack of learning feature
transferability across source and target cameras.

4.3. Introducing multiple cameras

Goal. The aim of this experiment is to validate the effectiveness
of our approach while introducing multiple cameras at the same
time into an existing network. We investigate two different sce-
narios such as (a) one common best source camera for all target
cameras and (b) multiple best source cameras, one for each target
camera in a dynamic network.

Implementation Details. We conduct this experiment on Shin-
puhkan2014 dataset [55] with of 16 cameras. We randomly chose
2, 3 and 5 cameras as the target cameras and treat the remain-
ing cameras as the source cameras. For scenario (a), we pick the
common best source camera based on the average distance and
for scenario (b), we use multiple best source cameras, one for each
target camera in the transitive inference.

Results. Fig. 5 show results of different methods in two dif-
ferent scenarios while randomly introducing 5 cameras on Shin-
puhkan2014 dataset. Following observations can be made: (i) simi-
lar to the results in Section 4.2, our approach outperforms all com-
pared methods in both scenarios. This indicates that the proposed
method is very effective and can be applied to large-scale dynamic
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Fig. 5. CMC curves for Shinpuhkan2014 dataset while introducing 5 cameras at the same time (Camera 2, 5, 7, 8, 14 as Targets). (a) Performance of different methods with
one common best source camera for all the target cameras and (b) Performance with multiple best source cameras, one for each target camera while computing re-id
performance across a network. Please see supplementary material for the results on 2 and 3 target cameras.

Table 1

Model adaptation with prototype selection. Numbers show rank-1
recognition scores in % averaged over all possible combinations of target
cameras, introduced one at a time.

Methods WARD RAID
SDALF 16.66 26.80
CPS 45.70 35.35
Direct-GFK 16.87 17.63
Best-GFK 32.72 24.74
Ours-Proto-10% 54.88 45.61
Ours-Proto-20% 60.72 53.67
Ours-Proto-30% 68.65 58.92
Ours 68.99 59.84

camera networks where multiple cameras can be introduced at
the same time. (ii) The proposed adaptation approach works bet-
ter with multiple best source cameras compared to a common best
source camera used for transitive inference (about 5% improvement
- see Fig. 5(b)). This is expected since multiple best source cameras
can better exploit information from different best source cameras.
Results with the integration of 2 and 3 cameras at the same time
are included in the supplementary.

4.4. Learning kernels with prototype selection

Goal. The main objective of this experiment is to analyze the
performance of our target-aware sparse prototype selection strat-
egy by using the selected prototypes from source camera while
learning the geodesic flow kernels (Section 3.4).

Implementation Details. The regularization parameters A and
B in (9) are taken as Ag/y where y =50 and Xq is analytically
computed from the data [49]. « is empirically set to 0.5 and kept
fixed for all results. We compare our approach with four variants
of our method where 10%, 20%, and 30% of source camera images
are selected as protytpes for estimating the pair-wise kernels.

Results. Table 1 shows the results on both WARD and RAiD
datasets. We have the following observations: (i) our approach
(Ours-Proto-30%) achieves the similar performance (difference
of only less than 1%) as the full set with only 30% of source cam-
era prototypes. This can greatly reduce the deployment cost of

new cameras in many large-scale camera networks involving sig-
nificantly large number of images. (ii) our approach with only 10%
of selected prototypes (Ours-Proto-10Y%) significantly outper-
forms all compared methods that use all existing source data on
both datasets. The rank-1 performance improvements over CPS are
9.18% and 10.26% on WARD and RAiD datasets respectively.

We also investigate the effectiveness of our target-aware sparse
prototype selection strategy by comparing with randomly select-
ing 20% of prototypes, and found that the later produces inferior
results with rank-1 accuracy of 27.54% and 19.82% on WARD and
RAID datasets respectively. We believe this is because our proto-
type selection strategy efficiently exploits the information of target
camera (see Eq. (9)) to select an informative subset of source cam-
era data which share similar characteristics as target camera.

4.5. Comparison with supervised re-identification

Goal. The main objective of this experiment is to compare the
performance of our approach with supervised alternatives while
on-boarding new cameras.

Implementation Details. Given a newly introduced camera, we
use the metric learning based methods to relearn the pair-wise
distance metrics using the same train/test split, as mentioned in
Section 4.1. We show the average performance over all possible
combinations by introducing one camera at a time.

Results. We have the following key findings from Table 2:
(i) both variants of our unsupervised approach (Ours-K and
Ours-L) ouperforms all the feature transformation based ap-
proaches on both datasets by a big margin. (ii) on WARD dataset
with 3 cameras, our approach is very competitive on both settings:
Ours-K outperforms KISSME and LDML whereas Qurs-L over-
comes MLAPG. This result suggests that our approach is more ef-
fective in matching persons across a newly introduced camera and
existing source cameras by exploiting information from best source
camera via a transitive inference. (iii) on the RAiD dataset with 4
cameras, the performance gap between our method and metric-
learning based methods begins to appear. This is expected as with
a large network involving a higher number of camera pairs, an un-
supervised approach can not compete with a supervised one, es-
pecially, when the latter one is using an intensive training phase.
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Table 2

Comparison with supervised methods. Numbers show rank-1 recogni-
tion scores in % averaged over all possible combinations of target cam-
eras, introduced one at a time.

Methods WARD RAID Reference

FT 49.33 39.81 TPAMI2015 [11]
ICT 42.51 25.31 ECCV2012 [58]
WACN 37.53 17.71 CVPRW2012 [52]
KISSME 66.95 55.68 CVPR2012 [46]
LDML 58.66 61.52 ICCV2009 [59]
XQDA 77.20 77.81 TPAMI2015 [57]
MLAPG 72.26 77.68 ICCV2015 [15]
Ours-K 68.99 59.84 Proposed
Ours-L 73.77 61.87 Proposed

However, we would like to point out once more that in practice
collecting labeled samples from a newly inserted camera is very
difficult and unrealistic in actual scenarios.

4.6. Extension to semi-supervised adaptation

Goal. The objective of this experiment is to analyze the perfor-
mance of our proposed approach by incorporating the labeled data
from the target camera.

Implementation Details. We compare the proposed unsuper-
vised approach with four variants of our method where 10%, 25%,
50% and 100% of the labeled data from target camera are used for
estimating kernel matrix respectively. We follow same experimen-
tal strategy except that we use PLS instead of PCA to compute the
discriminative subspaces in target camerain.

Results. We have the following key findings from Fig. 6: (i) As
expected, the semi-supervised baseline Qurs-Semi-1009%, works
best since it uses all the labeled data from target domain to
compute the kernel matrix for finding the best source camera.
(ii) Our method remains competitive to Ours-Semi-100% on
both datasets (Rank-1 accuracy: 60.04% vs 59.84% on RAiID and
26.41% vs 24.92% on SAIVT-SoftBio dataset). However, note that
collecting labeled samples from the target camera is very difficult
in practice. (iii) Interestingly, the performance gap between our
unsupervised method and other three semi-supervised baselines
(Ours-Semi-50%, Ours-Semi-25%, and Ours-Semi-10%) are

Cumulative Matching Characteristic (CMC)
Average over all Target Camera Combinations
T T T T

100

20 [

~
=)
T

2]

3
=)
T

—— Ours (NAUC 92.31)

—§— Ours-Semi-100% (nAUC 92.48)
—A— Ours-Semi-50% (nAUC 91.91)
——0urs-Semi-25% (NAUC 91.64)
== Ours-Semi-10% (nAUC 88.29)

1 2 4 6 8 10 12 14 16 18 20
Rank Score

Recognition Percentage
n w B
o o o
T T T

=
=)
T

=)

(a) RAID

moderate on RAID (Fig. 6-a), but on SAIVT-SoftBio, the gap is sig-
nificant (Fig. 6-b). We believe this is probably due to the lack of
enough labeled data in the target camera to give a reliable esti-
mate of PLS subspaces.

4.7. Analysis with different sets of people in the new camera

Goal. The goal of this experiment is to analyze the performance
of our approach with different identities of people appearing in the
target camera as in a real world setting. Note that the train and
test set are still kept disjoint as in standard re-id settings.

Implementation Details. We consider two scenarios as follows.
Scenario 1 with 0% overlap: first 15 persons in source camera and
next 20 persons in target camera for training on WARD dataset
while we use first 13 persons in source camera and next 10 per-
sons in target camera for training on RAiD dataset. Scenario 2 with
50% overlap: partial overlap of persons exists across source and tar-
get cameras, i.e., all the persons appearing in the source camera
are present in the target camera but there exists some persons that
only appear in target camera and not in source cameras. We con-
sider first 13 persons in source camera and all 23 persons in target
camera for training in this setting.

Results. Fig. 7 shows the re-id performance on WARD dataset
with completely disjoint sets of people in the target camera. Fol-
lowing are the key observations from Fig. 7: (i) the proposed
framework consistently outperforms all compared methods by a
significant margin even though completely new persons appear
in the target camera. (ii) similar to previous results with 100%
overlap of persons across source and target cameras (see Fig. 2),
CPS is still the most competitive. However, our approach out-
performs CPS by a margin about 20% in rank-1 accuracy on
WARD dataset. (iii) finally, the large performance gap between our
method, Direct-GFK and Best—-GFK (~30% in rank-1 accuracy)
once again shows the effectiveness of our transitive algorithm in
real-world scenarios where completely new person identities ap-
pear in the newly introduced camera.

Table 3 shows the performance of our approach with differ-
ent percentage of overlap in person identities across source and
target camera on RAID dataset. As expected, the performance in-
creases with increase in the percentage of overlap and achieves the
maximum rank-1 accuracy of 59.84% when the same set of people
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Fig. 6. Semi-supervised adaptation with labeled data. Plots (a,b) show CMC curves averaged over all target camera combinations on RAiD and SAIVT-SoftBio respectively.
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Fig. 7. Re-identification performance on WARD dataset with different sets of people in the target camera (Scenario 1: 0% Overlap). Plots (a, b, ¢) show the performance of

different methods while introducing camera 1, 2 and 3 respectively to a network.

Table 3

Performance comparison with different % of overlap in person identi-
ties across source and target camera. Numbers show rank-1 recognition
scores in % averaged over all possible combinations of target cameras,
introduced one at a time.

Datasets 0% Overlap 50% Overlap 100% Overlap

RAiD 50.83 56.81 59.84

appear in all camera views as in standard person re-identification
setting. This is because kernel matrices are the best measure of
similarity when there is complete overlap across two data distri-
butions. Our approach outperforms all compared methods at 0%
overlap on both WARD and RAiD datasets showing it’s effective-
ness in fully open world re-identification systems with both dy-
namic network and completely different sets of persons appearing
in the newly introduced camera(s).

4.8. Additional results in the supplementary material

We include the following experiments and results in our sup-
plementary material. (a) We perform experiment to verify the ef-
fectiveness of our approach by replacing KISSME [46] with LDML
metric learning [59] as the initial set up and observe that our
approach outperforms all compared methods in both WARD and
RAID datasets suggesting that the proposed adaptation technique
works significantly well irrespective of the metric learning method
used in the existing network. (b) We verify the effectiveness of our
approach by changing the feature representation from LOMO fea-
ture with Weighted Histograms of Overlapping Stripes (WHOS) fea-
ture representation [57]. Our approach outperforms all compared
methods which suggests that the proposed adaptation technique
works significantly well irrespective of the feature used to repre-
sent persons in a camera network. Moreover, the significant im-
provement over Best-GFK (~10%) shows that the proposed tran-
sitive algorithm is very effective in exploiting information from the
best source camera irrespective of the feature representation. (c)
We also analyze the performance of our method by changing the
dimension of subspace used to compute the geodesic flow kernels
and observe that dimensionality of the subspace has a little ef-
fect on the performance suggesting that our method is robust to
the change in dimensionality of the subspace used to compute the
geodesic kernels across target and source cameras.

Moreover, due to space constraint, we only report average CMC
curves for most experiments in our main paper and leave the full
CMC curves including more qualitative matching results in the sup-
plementary material.

5. Conclusions and future works

In this paper, we presented an efficient yet scalable frame-
work to adapt person re-identification models in a dynamic net-
work, where one or multiple new cameras may be temporarily in-
serted into an existing system to get additional information. We
developed an unsupervised approach based on geodesic flow ker-
nel to find the best source camera to pair with newly introduced
camera(s), without requiring a very expensive training phase. We
then introduced a simple yet effective transitive inference algo-
rithm that can exploit information from best source camera to im-
prove the accuracy across other camera pairs. Moreover, we de-
velop a source-target selective adaptation strategy that uses a sub-
set of source data instead of all existing data to compute the ker-
nels in resource constrained environments. Extensive experiments
on several benchmark datasets well demonstrate the efficacy of our
method over state-of-the-art methods.

In our current work, we explained how it is possible to onboard
new camera(s) to an existing network with no additional supervi-
sion for the new cameras. However, transfer learning across net-
works is still a largely under-addressed problem with many chal-
lenges. Given multiple existing source networks and a newly in-
stalled target network with limited labeled data, we first need
to find the relevance/similarity of each source network, or parts
thereof, in terms of amount of knowledge that it can transfer to
a target network. Developing efficient statistical measures for find-
ing relevance in a multi-camera network with significant changes
in viewing angle, lighting, and occlusion can be a very interest-
ing future work. Furthermore, labeled data from source networks
are often a subject of legal, technical and contractual constraints
between data owners and customers. Thus, existing transfer learn-
ing approaches may not be directly applicable in such scenarios
where the source data is absent. However, compared to the source
data, the well-trained source model(s) are usually freely accessi-
ble in many applications and contain equivalent source knowledge
as well. Leveraging person re-identification models in absence of
source data via knowledge distillation [61], can be another inter-
esting direction for future research.
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