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a b s t r a c t 

Existing approaches for person re-identification have concentrated on either designing the best feature 

representation or learning optimal matching metrics in a static setting where the number of cameras 

are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re- 

identification problem, where one or multiple new cameras may be temporarily on-boarded into an ex- 

isting system to get additional information or added to expand an existing network. To address such a 

very practical problem, we propose a novel approach for adapting existing multi-camera re-identification 

frameworks with limited supervision. First, we formulate a domain perceptive re-identification method 

based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt 

with newly introduced target camera(s), without requiring a very expensive training phase. Second, we 

introduce a transitive inference algorithm for re-identification that can exploit the information from best 

source camera to improve the accuracy across other camera pairs in a network of multiple cameras. 

Third, we develop a target-aware sparse prototype selection strategy for finding an informative subset of 

source camera data for data-efficient learning in resource constrained environments. Our approach can 

greatly increase the flexibility and reduce the deployment cost of new cameras in many real-world dy- 

namic camera networks. Extensive experiments demonstrate that our approach significantly outperforms 

state-of-the-art unsupervised alternatives whilst being extremely efficient to compute. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Person re-identification (re-id), which addresses the problem

f matching people across non-overlapping views in a multi-

amera system, has drawn a great deal of attention in the last

ew years [1] . Much progress has been made in developing meth-

ds that seek either the best feature representations (e.g., [2,3] )

r propose to learn optimal matching metrics (e.g., [4,5] ). While

hey have obtained reasonable performance on commonly used

enchmark datasets, we believe that these approaches have not

et considered a fundamental related problem: Given a camera net-

ork where the inter-camera transformations/distance metrics have

een learned in an intensive training phase, how can we on-board

ew camera(s) into the installed system with minimal additional ef-

ort? This is an important problem to address in many realistic re-

dentification scenarios, where one or multiple new cameras may
∗ Corresponding author. 
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e temporarily inserted into an existing system to get additional

nformation. 

To illustrate such a problem, let us consider a scenario with N 

ameras for which we have learned the “optimal” pair-wise dis-

ance metrics, so providing high re-identification accuracy for all

amera pairs. However, during a particular event, a new camera

ay be temporarily introduced to cover a certain related area that

s not well-covered by the existing network of N cameras (see

ig. 1 for an example). Despite the dynamic and open nature of

he world, almost all work in re-identification assume a static and

losed world model of the re-id problem where the number of

ameras are fixed in a network. Given a newly introduced cam-

ra, traditional re-id methods will try to relearn the inter-camera

ransformations/distance metrics using a costly training phase. This

s impractical since labeling data in the new camera and then

earning transformations with the others is time-consuming, and

efeats the entire purpose of temporarily introducing the addi-

ional camera. Thus, there is a pressing need to develop unsuper-

ised approaches for integrating new camera(s) into an existing re-

dentification framework with limited supervision. 

https://doi.org/10.1016/j.patcog.2019.106991
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.106991&domain=pdf
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Fig. 1. Consider an existing network with two cameras C 1 and C 2 where we have 

learned a re-identification model using pair-wise training data from both of the 

cameras. During the operational phase, two new cameras C 3 and C 4 are introduced 

to cover a certain area that is not well covered by the existing 2 cameras. Most 

of the existing methods do not consider such dynamic nature of a re-id model. In 

contrast, we propose an unsupervised approach for on-boarding new camera(s) into 

the existing re-identification framework by exploring: what is the best source cam- 

era(s) to pair with the new cameras and how can we exploit the best source camera(s) 

to improve the matching accuracy across the other existing cameras? 
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Domain adaptation [6] has recently been successful in many vi-

sion problems such as object recognition [7,8] and activity classifi-

cation [9] with multiple classes or domains. The main objective is

to scale learned systems from a source domain to a target domain

without requiring prohibitive amount of training data in the target

domain. Considering newly introduced camera(s) as target domain,

we pose an important question in this paper: Can unsupervised do-

main adaptation be leveraged upon for on-boarding new camera(s)

into person re-identification frameworks with limited supervision? 

Unlike object recognition [7] , domain adaptation for person re-

identification has additional challenges. A central issue in domain

adaptation is which source to transfer from . When there is only one

source of information available which is highly relevant to the task

of interest, then domain adaptation is much simpler than in the

more general and realistic case where there are multiple sources

of information of greatly varying relevance. Re-identification in a

dynamic network falls into the latter, more difficult case. Specifi-

cally, given multiple source cameras (already installed) and a tar-

get camera (newly introduced), how can we select the best source

camera to pair with the target camera? The problem can be easily

extended to multiple additional cameras being introduced. 

Moreover, once the best source camera is identified, how can

we exploit this information to improve the re-identification accuracy

of other camera pairs? For instance, let us consider C 1 being the

best source camera for the newly introduced camera C 3 in Fig. 1 .

Once the pair-wise distance metric between C 1 and C 3 is obtained,

can we exploit this information to improve the re-identification ac-

curacy across ( C 2 –C 3 )? This is an especially important problem be-

cause it will allow us to now match data in the newly inserted

target camera C 3 with all the previously installed cameras. 

Given a network with thousands of cameras involving large

number of images, finding the best source camera for a newly in-

troduced camera can involve intensive computation of the pair-

wise kernels over the whole set of images. Thus, it is important

to automatically select an informative subset of the source data to

pair with the target domain data. Specifically, can we select an in-

formative subset of source camera data that share similar character-

istics as target camera data and use those for model adaptation in

resource constrained environments? This is crucial to increase the

flexibility and decrease the deployment cost of newly introduced

cameras in large-scale dynamic camera networks. 
.1. Overview of solution strategy 

We first propose an unsupervised approach based on geodesic

ow kernel [8,10] that can effectively find the best source cam-

ra to adapt with a target camera. Given camera pairs, each con-

isting of 1 (out of N ) source camera and a target camera, we

rst compute a kernel over the subspaces representing the data of

oth cameras and then use it to find the kernel distance across the

ource and target camera. Then, we rank the source cameras based

n the average distance and choose the one with lowest distance

s the best source camera to pair with the target camera. This is

ntuitive since a camera which is closest to the newly introduced

amera will give the best re-identification performance on the tar-

et camera and hence, is more likely to adapt better than others. In

ther words, a source camera with lowest distance with respect to

 target camera indicates that both of the sensors could be similar

o each other and their features may be similarly distributed. Note

hat we learn the kernel with the labeled data from the source

amera only. 

We then introduce a transitive inference algorithm for per-

on re-identification that can exploit information from best source

amera to improve accuracy across other camera pairs. Remind-

ng the previous example in Fig. 1 in which source camera C 1 best

atches with target camera C 3 , our proposed transitive algorithm

stablishes a path between camera pair ( C 2 − C 3 ) by marginaliza-

ion over the domain of possible appearances in best source cam-

ra C 1 . Specifically, C 1 plays the role of a “connector” between C 2 
nd C 3 . Experiments show that this approach consistently increases

he overall re-identification accuracy in multiple networks by im-

roving matching performance across camera pairs, while exploit-

ng side information from best source camera. 

Moreover, we also propose a source-target selective adaptation

trategy that uses a subset of source camera data instead of all

xisting data to compute the kernels for finding the best source

amera to pair with a target camera. Our key insight is that not

ll images in a source camera are equally effective in terms of

daptability and hence using an informative subset of images from

he existing source cameras whose characteristics are similar to

hose of the target camera can well adapt the models in resource

onstrained environments. We develop a target-aware sparse pro-

otype selection strategy using � 2,1 -norm optimization to select a

ubset of source data that can efficiently describe the target set.

xperiments demonstrate that our source-target selective learning

trategy achieves the same performance as the full set while only

sing about 30% of images from the source cameras. Interestingly,

ur approach with prototype selection outperforms the compared

ethods that use all existing source data by a margin of about 8%-

0% in rank-1 accuracy with only requiring about 10% of source

amera data while introducing new cameras. 

.2. Contributions 

We address a novel, and very practical problem in this paper—

ow to add one or more cameras temporarily to an existing

etwork and exploit it for person re-identification, without also

dding a very expensive training phase. Towards solving this prob-

em, we make the following contributions: (i) an unsupervised re-

dentification approach based on geodesic flow kernel that can find

he best source camera to adapt with newly introduced target cam-

ra(s) in a dynamic camera network; (ii) a transitive inference al-

orithm to exploit side information from the best source camera to

mprove the matching accuracy across other source-target camera

airs; (iii) a target-aware sparse prototype selection strategy using

 2,1 -norm optimization to select an informative subset of source

amera data for data-efficient learning in resource constrained en-

ironments; (iv) rigorous experiments validating the advantages
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f our approach over existing alternatives on multiple benchmark

atasets with variable number of cameras. 

. Related work 

Person re-identification has been studied from different per-

pectives (see [1] for a recent survey). Here, we focus on some

epresentative methods closely related to our work. 

Supervised Re-identification. Most existing person re-

dentification techniques are based on supervised learning. These

ethods either seek the best feature representation [2,3,11,12] or

earn discriminant metrics/dictionaries [13–17] that yield an

ptimal matching score between two cameras or between a

allery and a probe image. Recently, deep learning methods

ave shown significant performance improvement on person

e-id [18–24] . Combining feature representation and metric learn-

ng with an end-to-end deep neural networks is also a recent

rend in re-identification [25–27] . Considering that a modest-

ized camera network can easily have hundreds of cameras,

hese supervised re-id models will require huge amount of la-

eled data which are difficult to collect in real-world settings.

n an effort to bypass tedious labeling of training data in su-

ervised re-id models, there has been recent interest in using

ctive learning for labeling examples in an interactive manner

28–31] . However, all these approaches consider a static camera

etwork unlike the problem domain we consider. 

Unsupervised Re-identification. Unsupervised learning models 

ave received little attention in person re-identification because of

heir weak performance on benchmarking datasets compared to

upervised methods. Representative methods along this direction

se either hand-crafted appearance features [32,33] or saliency

tatistics [34] for matching persons without requiring huge amount

f labeled data. Dictionary learning based methods have also been

tilized in an unsupervised setting [35,36] . Recently, Generative

dversarial Networks (GAN) has also been used in semi-supervised

ettings [37,38] . Although being scalable in real-world settings,

hese approaches have not yet considered the dynamic nature of

he re-identification problem, where new cameras can be intro-

uced at any time to an existing network. 

Open World Re-Identification. Open world recognition has

een introduced in [39] as an attempt to move beyond the static

etting to a dynamic and open setting where the number of train-

ng images/classes are not fixed in recognition. Recently there have

een few works in person re-identification [40,41] by assuming

hat gallery and probe sets contain different identities of persons.

nlike such approaches, we consider another yet important aspect

f open world person re-identification where the camera network

s dynamic and the system has to incorporate a new camera with

inimal additional effort. 

Domain Adaptation. Domain adaptation [6] , which aims to

dapt a source domain to a target domain, has been success-

ully used in many areas of computer vision, e.g., object classifi-

ation, and action recognition. Despite its applicability in classical

ision tasks, domain adaptation for re-identification still remains

s a challenging and under addressed problem. Recently, domain

daptation for re-id has begun to be considered [42–44] . However,

hese studies consider only improving the re-identification perfor-

ance in a static camera network with fixed number of cameras.

urthermore, most of these approaches learn supervised models

sing labeled data from the target domain. 

This paper has significant differences with our preliminary

ork in [45] . First, we develop a target-aware sparse prototype se-

ection strategy for selecting a subset of source camera data to pair

ith a target camera while computing kernels ( Section 3.4 ). This

s especially an important problem as it will increase the flexibility

nd decrease the deployment cost of newly introduced cameras in
any real world dynamic camera networks. Second, we extend our

pproach to more realistic scenarios where multiple cameras can

e introduced to the network at the same time and show the ef-

ectiveness of our approach in a large-scale network of 16 cameras

 Section 3.5 ). We also consider different identities of person ap-

earing in the newly introduced camera as in many real world set-

ings ( Section 3.6 ). Third, we conduct comprehensive experiments

o analyze the effect of feature representation and subspace di-

ension on the re-identification performance along with new ex-

eriments involving large number of images and cameras, different

ets of people in target camera and model adaptation with proto-

ype selection for resource-constrained environments ( Section 4 ). 

. Proposed methodology 

To on-board new camera(s) into an existing person re-

dentification framework, we first formulate an unsupervised ap-

roach based on geodesic flow kernel to find the best source cam-

ra ( Section 3.2 ) and then propose a transitive inference algorithm

o exploit information from the best source camera for improv-

ng matching accuracies across other source-target camera pairs

 Section 3.3 ). Next, we describe the details on our target-aware

parse prototype selection strategy to select an informative subset

f source camera data in Section 3.4 . 

.1. Initial setup 

Our proposed framework starts with an installed camera net-

ork where the discriminative distance metrics between each

amera pairs is learned using a off-line intensive training phase.

et there be N cameras in a network and the number of possible

amera pairs is 
(N 

2 

)
. Let { (x A 

i 
, x B 

i 
) } m 

i =1 
be a set of training samples,

here x A 
i 

∈ R 

D represents feature representation of a training sam-

le from camera view A and x B 
i 

∈ R 

D represents feature represen-

ation of the same person in a different camera view B. 

Given the training data, we follow KISS metric learning

KISSME) [46] and compute the pairwise matrices such that dis-

ance between images of the same individual is less than distance

etween images of different individuals. The basic idea of KISSME

s to learn the Mahalanobis distance by considering a log likeli-

ood ratio test of two Gaussian distributions. The likelihood ratio

est between dissimilar pairs and similar pairs can be written as 

 (x 

A 
i , x 

B 
j ) = log 

1 
C D exp (− 1 

2 
x 

T 
i j 
�−1 

D x i j ) 

1 
C S exp (− 1 

2 
x 

T 
i j 
�−1 

S x i j ) 
(1) 

here x i j = x A 
i 

− x B 
j 
, C D = 

√ 

2 π | �D | , C S = 

√ 

2 π | �S | , �D and �S 
re covariance matrices of dissimilar and similar pairs respectively.

ith simple manipulations, (1) can be written as R (x A 
i 
, x B 

j 
) =

 

T 
i j 

Mx i j , where M = �−1 
S − �−1 

D is the Mahalanobis distance be-

ween covariances associated to a pair of cameras. We perform an

igen-analysis to ensure M ∈ R 

D ×D is positive semi-definite [46] . 

Note that our approach is agnostic to the choice of metric learn-

ng algorithm used to learn the optimal metrics across camera

airs in an existing network. We adopt KISSME in this work since

t is simple to compute and has shown to perform satisfactorily on

he person re-identification problem. 

.2. Discovering the best source camera 

Objective. Given an existing camera network where optimal

amera pair-wise matching metrics are computed using the above

raining phase, our first objective is to select the best source cam-

ra which has the lowest kernel distance with respect to the newly



4 R. Panda, A. Bhuiyan and V. Murino et al. / Pattern Recognition 96 (2019) 106991 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

o  

o  

t  

c  

b

R  

g  

t  

c  

w

R  

c  

t  

p  

w  

l  

l  

i  

a  

t  

i  

f  

m

R  

a  

t  

s  

m  

j  

o  

l

3

 

p  

t  

q  

b  

r  

p  

i  

n

 

w  

S  

d

 

H  

a  

y  

t  

m  

c  

S  

t

K  

w  

s  

f  

u  
inserted camera. Towards this, we adopt an unsupervised strat-

egy based on geodesic flow kernel [8,10] to compute the distances

without requiring any labeled data from the new cameras. 

Approach Details. Our approach consists of the following steps:

(i) compute geodesic flow kernels between the new (target) cam-

era and other existing cameras (source); (ii) use the kernels to de-

termine the distance between them; (iii) rank the source cameras

based on distance with respect to the target camera and choose

the one with the lowest as best source camera. 

Let {X 

s } N 
s =1 

be the N source cameras and X 

T be the newly

introduced target camera. To compute the kernels in an unsuper-

vised way, we extend a previous method [10] that adapts classifiers

in the context of object recognition to the re-identification in a dy-

namic camera network. The main idea of our approach is to com-

pute the low-dimensional subspaces representing data of two cam-

eras (one source and one target) and then map them to two points

on a Grassmanian. Intuitively, if these two points are close by on

the Grassmanian, then the computed kernel would provide high

matching performance on the target camera. In other words, both

of the cameras could be similar to each other and their features

may be similarly distributed over the corresponding subspaces. For

simplicity, let us assume we are interested in computing the kernel

matrix K 

ST ∈ R 

D ×D between the source camera X 

S and a newly in-

troduced target camera X 

T . Let ˜ X 

S ∈ R 

D ×d and 

˜ X 

T ∈ R 

D ×d denote

the d -dimensional subspaces, computed using Partial Least Squares

(PLS) and Principal Component Analysis (PCA) on the source and

target camera, respectively. Note that we can not use PLS on the

target camera since it is a supervised dimension reduction tech-

nique and requires label information for computing the subspaces.

Given both of the subspaces, the closed loop solution to the

geodesic flow kernel across two cameras is defined as 

x 

S 
i 

T 
K 

ST x 

T 
j = 

∫ 1 

0 

(ψ(y ) T x 

S 
i ) 

T (ψ(y ) x 

T 
j ) d y (2)

where x S 
i 

and x T 
j 

represent feature descriptor of i th and j th sample

in source and target camera respectively. ψ( y ) is the geodesic flow

parameterized by a continuous variable y ∈ [0 , 1] and represents

how to smoothly project a sample from the original D -dimensional

feature space onto the corresponding low dimensional subspace.

The geodesic flow ψ( y ) can be defined as [10] , 

ψ(y ) = 

{ 

˜ X 

S if y = 0 

˜ X 

T if y = 1 

˜ X 

S U 1 V 1 (y ) − ˜ X 

S 
o U 2 V 2 (y ) otherwise 

(3)

where ˜ X 

S 
o ∈ R 

D ×(D −d) is the orthogonal matrix to ˜ X 

S and

U 1 , V 1 , U 2 , V 2 are given by the following pairs of SVDs, 

X 

S T X 

T = U 1 V 1 P 

T , X 

S 
o 

T X 

T = −U 2 V 2 P 

T (4)

With the above defined matrices, K 

ST can be computed as 

K 

ST = 

[
˜ X 

S U 1 ˜ X 

S 
o U 2 

]
G 

⎡ 

⎣ 

U 

T 
1 X 

S T 

U 

T 
2 X 

S 
o 

T 

⎤ 

⎦ (5)

where G = 

[ 

diag [1 + 

sin (2 θi ) 

2 θi 
] diag [ 

( cos (2 θi ) −1) 

2 θi 
] 

diag [ 
( cos (2 θi ) −1) 

2 θi 
] diag [1 − sin (2 θi ) 

2 θi 
] 

] 

and [ θi ] 
d 
i =1 

rep-

resents the principal angles between source and target camera.

Once we compute all pairwise geodesic flow kernels between a

target camera and source cameras using (5) , our next objective is

to find the distance across all those pairs. A source camera which

is closest to the new camera is more likely to adapt better than

others. We follow [47] to compute distance between a target and

source camera pair. Specifically, given a kernel matrix K 

ST , the dis-

tance between data points of a source and target camera is defined

as 

D 

ST (x 

S 
i , x 

T 
j ) = x 

S 
i 

T 
K 

ST x 

S 
i + x 

T 
j 

T 
K 

ST x 

T 
j − 2 x 

S 
i 

T 
K 

ST x 

T 
j (6)
here D 

ST ∈ R 

n s ×n t represents the kernel distance matrix defined

ver a source and target camera. n s and n t represent the number

f images in source and target camera respectively. We compute

he average of D 

ST and consider it as the distance between two

ameras. Finally, we chose the one that has the lowest distance a

est source camera to pair with the newly introduced camera. 

emark 1. Note that we do not use any labeled data from the tar-

et camera to either compute the geodesic flow kernels in (5) or

he kernel distance matrices in (6) . Hence, our proposed approach

an be applied integrate new cameras in a large-scale camera net-

ork with minimal additional effort. 

emark 2. We assume that the newly introduced camera will be

lose to at least one of the installed ones since we consider them

o be operating in the same time window with same set of peo-

le appear in all camera views, as in most prior works except the

ork in [40] . However, our proposed adaptation approach is not

imited to this constrained setting as we compute the view simi-

arity in a completely unsupervised manner and hence can be eas-

ly applied in real-world settings where different sets of people

ppear in different camera views. To the best of our knowledge,

his is first work which can be employed in fully open world re-

dentification systems considering both dynamic network and dif-

erent identity of persons across cameras (see illustrative experi-

ents in Section 4.7 ). 

emark 3. We also assume that person detections are available

priori before learning the re-identification models. However, in

he dynamic environment addressed in this paper an important is-

ue is the person detector for which the new camera could be even

ore challenging than for the re-id algorithm. Thus, it is critical to

ointly adapt the person detectors and re-identification models for

ptimal performance in real world dynamic camera networks–we

eave this as an interesting future work. 

.3. Transitive inference for re-identification 

Objective. In the previous section we have presented an unsu-

ervised approach for finding best source camera to pair with the

arget camera. Once the best source camera is identified, another

uestion that remains in adapting models is: can we exploit the

est source camera information to improve the re-identification accu-

acy across other camera pairs? Specifically, our objective is to ex-

loit K 

S � T and pair-wise optimal metrics learned in Section 3.1 to

mprove the matching accuracies of the target camera in a

etwork. 

Approach Details. Let { M 

i j } N 
i, j=1 ,i< j 

be the optimal pair-

ise metrics learned in a network of N cameras following

ection 3.1 and S � be the best source camera for a newly intro-

uced target camera T following Section 3.2 . 

Motivated by the effectiveness of Schur product (a.k.a.

adamard product) for improving the matrix consistency and reli-

bility in multi-criteria decision making [48] , we develop a simple

et effective transitive algorithm for exploiting information from

he best source camera. Our problem naturally fits to such decision

aking systems since our goal is to establish a path between two

ameras via the best source camera. Given the best source camera

 

� , we compute the kernel matrix between remaining source and

arget camera as follows, 

˜ 
 

ST = M 

S S � 
� K 

S � T , ∀ [ S ] N i =1 , S � = S � (7)

here ˜ K 

ST ∈ R 

D ×D represents the updated kernel matrix between

ource camera S and target camera T by exploiting information

rom best source camera S � . The operator � denotes Schur prod-

ct of two matrices. Eq. (7) establishes an indirect path between
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Algorithm 1 Algorithm for Solving Problem (9). 

Input: Feature matrices X 

s and X 

T ;Parameters α, λ, β , set t = 0 

Initialize Z 

s and Z 

T randomly, set Z c = [ Z 

s |Z 

T ] 
Output: Optimal sparse coefficient matrix Z c . 

while not converged do 

1. Compute P t , Q 

t and R t as: 

P ii = 

1 

2 
√ ||Z 

s 
i 
|| 2 

2 
+ ε

, Q ii = 

1 

2 
√ ||Z 

T 
i 
|| 2 

2 
+ ε

, 

R ii = 

1 

2 
√ || Z c i || 2 2 

+ ε

2. Compute Z 

s t+1 and Z 

T t+1 
as: 

Z 

s = ( X 

s T X 

s + 2 λP + 2 βR ) 
−1 

X 

s T X 

s 

Z 

T = (αX 

s T X 

s + 2 λQ + 2 βR ) 
−1 

αX 

s T X 

T 

3. Compute Z 

t+1 
c as: Z 

t+1 
c = [ Z 

s t+1 | Z 

T t+1 
]; 

4. t = t + 1 ; 

end while 

 

e  

o  

n  

t  

S  

r  

b  

r

3

 

i  

e  

m  

s  

w  

e  

e  

i  

i

3

 

t  

d  

i  

w  

t  

c  

p  

fi  

c  

a

4

 

p

4

 

m  
amera pair ( S, T ) by marginalization over the domain of possi-

le appearances in best source camera S � . In other words, camera

 

� plays a role of connector between the target camera T and all

ther source cameras. 

Summarizing, to incorporate new camera(s) in an existing net-

ork, we use the kernel matrix K 

S � T in (5) to obtain the re-id ac-

uracy across the new camera and best source camera, whereas we

se the updated kernel matrices, computed using (7) to find the

atching accuracy across the target camera and remaining source

ameras in an existing network. 

.4. Learning kernels with prototype selection 

Objective. For many applications with limited computation and

ommunication resources, there is an imperative need of methods

hat could extract an informative subset from the source camera

ata for computing the kernels instead of all existing data. Thus,

ur main objective in this section is to develop a prototype selec-

ion strategy for finding a subset of source camera data that share

imilar characteristics as the target camera and then use those for

iscovering the best source camera in Section 3.2 . 

Approach Details. Motivated by sparse subset selection [49] ,

e develop an efficient optimization framework to extract a sparse

et of source camera images that are informative about the given

ource camera as well as informative about the target camera. We

ormulate the following objective function, 

min 

 

s ∈ R n s ×n s , Z T ∈ R n t ×n t 

1 

2 

(‖ X 

s − X 

s Z 

s ‖ 

2 
F + α‖ X 

T − X 

s Z 

T ‖ 

2 

F 

)
+ λ

(‖ Z 

s ‖ 2 , 1 + ‖ Z 

T ‖ 2 , 1 

)
(8) 

here α > 0 balances the penalty between errors in the re-

onstruction of source camera data X 

s ∈ R 

D ×n s and errors in

he reconstruction of target camera data X 

T ∈ R 

n s ×n t . ||Z 

s || 2 , 1 =
 m 

i =1 ||Z 

s 
i 
|| 2 and ||Z 

s 
i 
|| 2 is the � 2 -norm of the i th row of Z 

s . λ> 0

s a sparsity regularization parameter. 

The objective function is intuitive: minimization of (8) favors

electing a sparse set of prototypes that simultaneously recon-

tructs the source camera data X 

s via Z 

s , as well as the target

amera data X 

T via Z 

T , with high accuracy. Specifically, rows in

 

s provide information on relative importance of each image in 

escribing the source camera X 

s , while rows in X 

T give informa-

ion on relative importance of each image in X 

s in describing tar-

et camera X 

T . Given the two sparse coefficient matrices, our next

oal is to select a unified set of images from source camera that

hare similar characteristics with target camera. To achieve this, we

ropose to minimize the following objective function: 

min 

 

s , Z T 
1 

2 

(‖ X 

s − X 

s Z 

s ‖ 

2 
F + α‖ X 

T − X 

s Z 

T ‖ 

2 

F 

)
+ λ

(‖ Z 

s ‖ 2 , 1 + ‖ Z 

T ‖ 2 , 1 

)
+ β||Z c || 2 , 1 s.t. Z c = [ Z 

s |Z 

T ] (9) 

here � 2,1 -norm on the consensus matrix Z c ∈ n s × (n s + n t ) en-

bles Z 

s and Z 

T to have the similar sparse patterns and share the

ommon components. In each round of the optimization, the up-

ated sparse coefficient matrices in the former rounds can be used

o regularize the current optimization criterion. Thus, it can un-

over the shared knowledge of Z 

s and Z 

T by suppressing irrele-

ant images that are less effective in terms of adaptability to the

ewly introduced camera. 

Optimization. Since problem (9) is non-smooth involving mul-

iple � 2,1 -norms, it is difficult to optimize directly. Motivated by the

ffectiveness of Half-quadratic optimization [50] , we devise an iter-

tive algorithm to solve (9) by minimizing its augmented function

lternatively as shown in Algorithm 1 . More details on the opti-

ization are included in the supplementary material. 
Once the problem (9) is solved, we first sort the source cam-

ra images by decreasing importance according to the � 2 norms

f the rows of Z c . To summarize, we first learn the pair-wise ker-

els across all the unlabeled target camera data and selected pro-

otypes from the source camera to discover the best camera as in

ection 3.2 . Second, we adopt the same transitive inference algo-

ithm mentioned in Section 3.3 to exploit the information from the

est source camera to improve the person re-identification accu-

acy across remaining source-target camera pairs. 

.5. Extension to multiple newly introduced cameras 

Our approach is not limited to a single camera and can be eas-

ly extended to even more realistic scenarios where multiple cam-

ras are introduced to an existing network at the same time. Given

ultiple newly introduced cameras, one can follow two different

trategies to adapt re-identification models in dynamic camera net-

orks. Specifically, one can easily find a common best source cam-

ra based on lowest average distance to pair with all the new cam-

ras or multiple best source cameras, one for each target camera,

n an unsupervised way similar to the above approach (see exper-

ments in Section 4.3 ). 

.6. Extension to semi-supervised adaptation 

Although our framework is designed for unsupervised adapta-

ion of re-identification models, it can be easily extended if labeled

ata from the newly introduced camera become available. Specif-

cally, the label information from target camera can be encoded

hile computing subspaces. That is, instead of using PCA for es-

imating the subspaces, we can use Partial Least Squares (PLS) to

ompute the discriminative subspaces on the target data by ex-

loiting the labeled information. PLS has shown to be effective in

nding discriminative subspaces by projecting labeled data into a

ommon subspace [51] . This essentially leads to semi-supervised

daptation in a camera network (see experiments in Section 4.6 ). 

. Experiments 

In this section, we evaluate the performance of our approach by

erforming several experiments on multiple benchmark datasets. 

.1. Datasets and settings 

Datasets. We conduct experiments on five different bench-

ark datasets to verify the effectiveness of our framework,
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namely WARD [52] , RAiD [53] , SAIVT-SoftBio [54] , Shin-

puhkan2014 [55] and Market-1501 [56] . The number of cameras

in WARD, RAiD and SAIVT-SoftBio are 3, 4, and 8 respectively.

Shinpuhkan2014 dataset with 16 cameras is one of the largest

publicly available dataset in terms of number of cameras, while

the Market-1501 dataset is one of the largest dataset in terms of

number of images containing 32,668 images across 6 cameras.

Since Market-1501 dataset is not designed for camera pair-wise

re-identification, we pre-process it according to our experi-

mental setting and choose 605 persons who are present across

all cameras. More details on the datasets are available in the

supplementary material. 

Feature Extraction and Matching. The feature extraction stage

consists of extracting Local Maximal Occurrence (LOMO) fea-

ture [57] for person representation. The descriptor has 26,960 di-

mensions. We apply principal component analysis to reduce the

dimensionality to 100 in all our experiments, as in [46] . With-

out low-dimensional feature, it is computationally infeasible to in-

verse covariance matrices as discussed in [46] . We use kernel dis-

tance [47] ( Eq. (6) ) to compute both distance between cameras and

matching scores. 

Performance Measures. We show results using Cumulative

Matching Characteristic (CMC) curves and normalized Area Under

Curve (nAUC) values, as is common practice in re-identification

literature. CMC curve is a plot of recognition performance versus

ranking score and represents the expectation of finding correct

match in the top k matches. nAUC gives an overall score of how

well a re-id method performs irrespective of the dataset size. 

Experimental Settings. All the images for each dataset are nor-

malized to 128 × 64 for being consistent with the evaluations car-

ried out by state-of-the-art methods [3,33,53] . Following the liter-

ature [46,53,57] , the train and test set are kept disjoint by picking

half of the available data for training set and rest of the half for

testing. We repeated each task 10 times by randomly picking 5 im-

ages from each identity both for train and test time. The subspace

dimension for all the possible combinations are kept 50. 

Compared Methods. We compare our approach with both un-

supervised and supervised alternatives as follows. 

(a) Unsupervised Methods. We compare our approach with sev-

eral unsupervised alternatives which fall into two categories:

(i) hand-crafted feature-based methods including CPS [33] and

SDALF [3] , (ii) two domain adaptation based methods ( Best-GFK
and Direct-GFK ) based on geodesic flow kernel [10] . For

Best-GFK baseline, we compute the re-id performance of a cam-

era pair by applying the kernel matrix, K 

S � T computed between

best source and target camera [10] , whereas in Direct-GFK base-

line, we use the kernel matrix computed directly across source

and target camera using (5) . The purpose of comparing with
Fig. 2. CMC curves for WARD dataset with 3 cameras. Plots (a, b, c) show the perform

dynamic network. Please see the text in Section 4.2 for the analysis of the results. 
est-GFK is to show that the kernel matrix computed across the

est source and target camera does not produce optimal re-id per-

ormance in computing matching performance across other source

ameras and the target camera. On the other hand, the purpose

f comparing with Direct-GFK baseline is to explicitly show the

ffectiveness of our transitive algorithm in improving re-id perfor-

ance in a dynamic camera network. 

We use publicly available codes for CPS and SDALF and tested

n our experimented datasets. We use the same features as the

roposed one and kept the parameters same as mentioned in

he published works. We also implement both Best-GFK and

irect-GFK baselines under the same experimental settings to

ave a fair comparison with our proposed method. 

(b) Supervised Methods. We compare with several supervised al-

ernatives which fall into two categories: (i) feature transforma-

ion based methods including FT [11] , ICT [58] , WACN [52] , (ii)

etric learning based methods including KISSME [46] , LDML [59] ,

QDA [57] and MLAPG [15] . Our model can operate with any initial

etwork setup and hence we show our results with both KISSME

nd Logistic Discriminant-based Metric Learning (LDML) [59] , de-

oted as Ours-K and Ours-L , respectively. Note that we could

ot compare with recent deep learning based methods as they are

ostly specific to a static setting and also their pairwise camera

esults are not available on the experimented datasets. We did not

e-implement such methods in our dynamic setting as it is very

ifficult to exactly emulate all the implementation details. 

To report existing feature transformation based methods results,

e use prior published performances from [53] . For metric learn-

ng based methods, we use publicly available codes and test on our

xperimented datasets. 

.2. Re-identification by introducing a new camera 

Goal. The main goal of this experiment is to analyze (a) the

erformance of our unsupervised approach while finding the best

ource camera to pair with the target camera ( Section 3.2 ) and

b) performance of our transitive inference approach for exploit-

ng the information from best source camera to improve the re-

dentification accuracy of other camera pairs? ( Section 3.3 ) 

Implementation Details. We considered one camera as newly

ntroduced target camera and all the other as source cameras. We

onsidered all the possible combinations for conducting experi-

ents. We first pick which source camera matches best with the

arget one, and then use the proposed transitive algorithm to com-

ute the re-id performance across remaining camera pairs. 

Results. Fig. 2 show the results for all possible combinations

n the 3 camera WARD dataset, whereas Fig. 3 shows the aver-

ge performance over all possible combinations by inserting one
ance of different methods while introducing camera 1, 2 and 3 respectively to a 
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Fig. 3. CMC curves averaged over all target camera combinations, introduced one at a time. (a) Results on RAiD dataset with 4 cameras (b) Results on SAVIT-SoftBio dataset 

with 8 cameras, and (c) Results on Market-1501 dataset with 6 cameras. 

Fig. 4. Effectiveness of our transitive algorithm in person re-identification on (a) WARD and (b) SAIVT-SoftBio datasets. Top row: Our matching result using the transitive 

algorithm. Middle row: matching the same person using Best-GFK . Bottom row: matching the same person using Direct-GFK . Visual comparison of top 10 matches 

shows that Ours perform best in matching persons across camera pairs by exploiting information from the best source camera. More qualitative results are included in the 

supplementary material. Best viewed in color. 
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amera on RAiD, SAIVT-SoftBio and Market-1501 datasets respec-

ively. The following observations can be made from the figures:

i) the proposed framework for re-identification consistently out-

erforms all compared unsupervised methods on all datasets by a

onsiderable margin, including the Market-1501 dataset with sig-

ificantly large number of images and person identities. (ii) among

he alternatives, CPS is the most competitive. However, the gap

s still significant due to the two introduced components working

n concert: discovering the best source camera and exploiting its

nformation for re-identification. The rank-1 performance improve-

ents over CPS are 23.44%, 24.50%, 9.98% and 2.85% on WARD,

AiD, SAIVT-SoftBio and Market-1501 datasets respectively. (iii)

est-GFK works better than Direct-GFK in most cases, sug-

esting that kernel computed across the best source camera and

arget camera can be applied to find the matching accuracy across

ther camera pairs. (iv) Finally, the performance gap between our

ethod and Best-GFK (maximum improvement of 17% in nAUC

n RAiD) shows the effectiveness of our transitive algorithm in ex-

loiting information from the best source camera while comput-

ng re-identification accuracies across different source-target cam-

ra pairs (see Fig. 4 for some qualitative examples). 

We also compare our approach with a CNN-based deep learn-

ng method (ResNet-50 [60] classifier) on SAIVT-SoftBio dataset.

e train the network in identification setting and fine-tune from

he ImageNet pre-trained model using only source camera images

without any labeled images from the target camera). Once the

odel is finetuned, we evaluate re-identification using the learned

eature representations. Our approach performs significantly bet-
er than the ResNet-50 baseline (Rank-1: 24.92% vs 21.67%) which

nce again suggests that our approach is more effective by exploit-

ng information from best source camera via a transitive inference.

e believe the low performance of ResNet-50 baseline is due to

ack of enough labeled data as well as lack of learning feature

ransferability across source and target cameras. 

.3. Introducing multiple cameras 

Goal. The aim of this experiment is to validate the effectiveness

f our approach while introducing multiple cameras at the same

ime into an existing network. We investigate two different sce-

arios such as (a) one common best source camera for all target

ameras and (b) multiple best source cameras, one for each target

amera in a dynamic network. 

Implementation Details. We conduct this experiment on Shin-

uhkan2014 dataset [55] with of 16 cameras. We randomly chose

, 3 and 5 cameras as the target cameras and treat the remain-

ng cameras as the source cameras. For scenario (a), we pick the

ommon best source camera based on the average distance and

or scenario (b), we use multiple best source cameras, one for each

arget camera in the transitive inference. 

Results. Fig. 5 show results of different methods in two dif-

erent scenarios while randomly introducing 5 cameras on Shin-

uhkan2014 dataset. Following observations can be made: (i) simi-

ar to the results in Section 4.2 , our approach outperforms all com-

ared methods in both scenarios. This indicates that the proposed

ethod is very effective and can be applied to large-scale dynamic
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Fig. 5. CMC curves for Shinpuhkan2014 dataset while introducing 5 cameras at the same time (Camera 2, 5, 7, 8, 14 as Targets). (a) Performance of different methods with 

one common best source camera for all the target cameras and (b) Performance with multiple best source cameras , one for each target camera while computing re-id 

performance across a network. Please see supplementary material for the results on 2 and 3 target cameras. 

Table 1 

Model adaptation with prototype selection. Numbers show rank-1 

recognition scores in % averaged over all possible combinations of target 

cameras, introduced one at a time. 

Methods WARD RAiD 

SDALF 16.66 26.80 

CPS 45.70 35.35 

Direct-GFK 16.87 17.63 

Best-GFK 32.72 24.74 

Ours-Proto-10% 54.88 45.61 

Ours-Proto-20% 60.72 53.67 

Ours-Proto-30% 68.65 58.92 

Ours 68.99 59.84 
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camera networks where multiple cameras can be introduced at

the same time. (ii) The proposed adaptation approach works bet-

ter with multiple best source cameras compared to a common best

source camera used for transitive inference (about 5% improvement

– see Fig. 5 (b)). This is expected since multiple best source cameras

can better exploit information from different best source cameras.

Results with the integration of 2 and 3 cameras at the same time

are included in the supplementary. 

4.4. Learning kernels with prototype selection 

Goal. The main objective of this experiment is to analyze the

performance of our target-aware sparse prototype selection strat-

egy by using the selected prototypes from source camera while

learning the geodesic flow kernels ( Section 3.4 ). 

Implementation Details. The regularization parameters λ and

β in (9) are taken as λ0 / γ where γ = 50 and λ0 is analytically

computed from the data [49] . α is empirically set to 0.5 and kept

fixed for all results. We compare our approach with four variants

of our method where 10%, 20%, and 30% of source camera images

are selected as protytpes for estimating the pair-wise kernels. 

Results. Table 1 shows the results on both WARD and RAiD

datasets. We have the following observations: (i) our approach

( Ours-Proto-30% ) achieves the similar performance (difference

of only less than 1%) as the full set with only 30% of source cam-

era prototypes. This can greatly reduce the deployment cost of
ew cameras in many large-scale camera networks involving sig-

ificantly large number of images. (ii) our approach with only 10%

f selected prototypes ( Ours-Proto-10% ) significantly outper-

orms all compared methods that use all existing source data on

oth datasets. The rank-1 performance improvements over CPS are

.18% and 10.26% on WARD and RAiD datasets respectively. 

We also investigate the effectiveness of our target-aware sparse

rototype selection strategy by comparing with randomly select-

ng 20% of prototypes, and found that the later produces inferior

esults with rank-1 accuracy of 27.54% and 19.82% on WARD and

AiD datasets respectively. We believe this is because our proto-

ype selection strategy efficiently exploits the information of target

amera (see Eq. (9) ) to select an informative subset of source cam-

ra data which share similar characteristics as target camera. 

.5. Comparison with supervised re-identification 

Goal. The main objective of this experiment is to compare the

erformance of our approach with supervised alternatives while

n-boarding new cameras. 

Implementation Details. Given a newly introduced camera, we

se the metric learning based methods to relearn the pair-wise

istance metrics using the same train/test split, as mentioned in

ection 4.1 . We show the average performance over all possible

ombinations by introducing one camera at a time. 

Results. We have the following key findings from Table 2 :

i) both variants of our unsupervised approach ( Ours-K and

urs-L ) ouperforms all the feature transformation based ap-

roaches on both datasets by a big margin. (ii) on WARD dataset

ith 3 cameras, our approach is very competitive on both settings:

urs-K outperforms KISSME and LDML whereas Ours-L over-

omes MLAPG . This result suggests that our approach is more ef-

ective in matching persons across a newly introduced camera and

xisting source cameras by exploiting information from best source

amera via a transitive inference. (iii) on the RAiD dataset with 4

ameras, the performance gap between our method and metric-

earning based methods begins to appear. This is expected as with

 large network involving a higher number of camera pairs, an un-

upervised approach can not compete with a supervised one, es-

ecially, when the latter one is using an intensive training phase.
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Table 2 

Comparison with supervised methods. Numbers show rank-1 recogni- 

tion scores in % averaged over all possible combinations of target cam- 

eras, introduced one at a time. 

Methods WARD RAiD Reference 

FT 49.33 39.81 TPAMI2015 [11] 

ICT 42.51 25.31 ECCV2012 [58] 

WACN 37.53 17.71 CVPRW2012 [52] 

KISSME 66.95 55.68 CVPR2012 [46] 

LDML 58.66 61.52 ICCV2009 [59] 

XQDA 77.20 77.81 TPAMI2015 [57] 

MLAPG 72.26 77.68 ICCV2015 [15] 

Ours-K 68.99 59.84 Proposed 

Ours-L 73.77 61.87 Proposed 
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owever, we would like to point out once more that in practice

ollecting labeled samples from a newly inserted camera is very

ifficult and unrealistic in actual scenarios. 

.6. Extension to semi-supervised adaptation 

Goal. The objective of this experiment is to analyze the perfor-

ance of our proposed approach by incorporating the labeled data

rom the target camera. 

Implementation Details. We compare the proposed unsuper-

ised approach with four variants of our method where 10%, 25%,

0% and 100% of the labeled data from target camera are used for

stimating kernel matrix respectively. We follow same experimen-

al strategy except that we use PLS instead of PCA to compute the

iscriminative subspaces in target camerain. 

Results. We have the following key findings from Fig. 6 : (i) As

xpected, the semi-supervised baseline Ours-Semi-100% , works

est since it uses all the labeled data from target domain to

ompute the kernel matrix for finding the best source camera.

ii) Our method remains competitive to Ours-Semi-100% on

oth datasets (Rank-1 accuracy: 60.04% vs 59.84% on RAiD and

6.41% vs 24.92% on SAIVT-SoftBio dataset). However, note that

ollecting labeled samples from the target camera is very difficult

n practice. (iii) Interestingly, the performance gap between our

nsupervised method and other three semi-supervised baselines

 Ours-Semi-50% , Ours-Semi-25% , and Ours-Semi-10% ) are
Fig. 6. Semi-supervised adaptation with labeled data. Plots (a,b) show CMC curves aver
oderate on RAiD ( Fig. 6 -a), but on SAIVT-SoftBio, the gap is sig-

ificant ( Fig. 6 -b). We believe this is probably due to the lack of

nough labeled data in the target camera to give a reliable esti-

ate of PLS subspaces. 

.7. Analysis with different sets of people in the new camera 

Goal. The goal of this experiment is to analyze the performance

f our approach with different identities of people appearing in the

arget camera as in a real world setting. Note that the train and

est set are still kept disjoint as in standard re-id settings. 

Implementation Details. We consider two scenarios as follows.

cenario 1 with 0% overlap : first 15 persons in source camera and

ext 20 persons in target camera for training on WARD dataset

hile we use first 13 persons in source camera and next 10 per-

ons in target camera for training on RAiD dataset. Scenario 2 with

0% overlap : partial overlap of persons exists across source and tar-

et cameras, i.e., all the persons appearing in the source camera

re present in the target camera but there exists some persons that

nly appear in target camera and not in source cameras. We con-

ider first 13 persons in source camera and all 23 persons in target

amera for training in this setting. 

Results. Fig. 7 shows the re-id performance on WARD dataset

ith completely disjoint sets of people in the target camera. Fol-

owing are the key observations from Fig. 7 : (i) the proposed

ramework consistently outperforms all compared methods by a

ignificant margin even though completely new persons appear

n the target camera. (ii) similar to previous results with 100%

verlap of persons across source and target cameras (see Fig. 2 ),

PS is still the most competitive. However, our approach out-

erforms CPS by a margin about 20% in rank-1 accuracy on

ARD dataset. (iii) finally, the large performance gap between our

ethod, Direct-GFK and Best-GFK ( ∼ 30% in rank-1 accuracy)

nce again shows the effectiveness of our transitive algorithm in

eal-world scenarios where completely new person identities ap-

ear in the newly introduced camera. 

Table 3 shows the performance of our approach with differ-

nt percentage of overlap in person identities across source and

arget camera on RAiD dataset. As expected, the performance in-

reases with increase in the percentage of overlap and achieves the

aximum rank-1 accuracy of 59.84% when the same set of people
aged over all target camera combinations on RAiD and SAIVT-SoftBio respectively. 
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Fig. 7. Re-identification performance on WARD dataset with different sets of people in the target camera (Scenario 1: 0% Overlap ). Plots (a, b, c) show the performance of 

different methods while introducing camera 1, 2 and 3 respectively to a network. 

Table 3 

Performance comparison with different % of overlap in person identi- 

ties across source and target camera. Numbers show rank-1 recognition 

scores in % averaged over all possible combinations of target cameras, 

introduced one at a time. 

Datasets 0% Overlap 50% Overlap 100% Overlap 

RAiD 50.83 56.81 59.84 
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appear in all camera views as in standard person re-identification

setting. This is because kernel matrices are the best measure of

similarity when there is complete overlap across two data distri-

butions. Our approach outperforms all compared methods at 0%

overlap on both WARD and RAiD datasets showing it’s effective-

ness in fully open world re-identification systems with both dy-

namic network and completely different sets of persons appearing

in the newly introduced camera(s). 

4.8. Additional results in the supplementary material 

We include the following experiments and results in our sup-

plementary material. (a) We perform experiment to verify the ef-

fectiveness of our approach by replacing KISSME [46] with LDML

metric learning [59] as the initial set up and observe that our

approach outperforms all compared methods in both WARD and

RAiD datasets suggesting that the proposed adaptation technique

works significantly well irrespective of the metric learning method

used in the existing network. (b) We verify the effectiveness of our

approach by changing the feature representation from LOMO fea-

ture with Weighted Histograms of Overlapping Stripes (WHOS) fea-

ture representation [57] . Our approach outperforms all compared

methods which suggests that the proposed adaptation technique

works significantly well irrespective of the feature used to repre-

sent persons in a camera network. Moreover, the significant im-

provement over Best-GFK ( ∼10%) shows that the proposed tran-

sitive algorithm is very effective in exploiting information from the

best source camera irrespective of the feature representation. (c)

We also analyze the performance of our method by changing the

dimension of subspace used to compute the geodesic flow kernels

and observe that dimensionality of the subspace has a little ef-

fect on the performance suggesting that our method is robust to

the change in dimensionality of the subspace used to compute the

geodesic kernels across target and source cameras. 

Moreover, due to space constraint, we only report average CMC

curves for most experiments in our main paper and leave the full

CMC curves including more qualitative matching results in the sup-

plementary material. 
. Conclusions and future works 

In this paper, we presented an efficient yet scalable frame-

ork to adapt person re-identification models in a dynamic net-

ork, where one or multiple new cameras may be temporarily in-

erted into an existing system to get additional information. We

eveloped an unsupervised approach based on geodesic flow ker-

el to find the best source camera to pair with newly introduced

amera(s), without requiring a very expensive training phase. We

hen introduced a simple yet effective transitive inference algo-

ithm that can exploit information from best source camera to im-

rove the accuracy across other camera pairs. Moreover, we de-

elop a source-target selective adaptation strategy that uses a sub-

et of source data instead of all existing data to compute the ker-

els in resource constrained environments. Extensive experiments

n several benchmark datasets well demonstrate the efficacy of our

ethod over state-of-the-art methods. 

In our current work, we explained how it is possible to onboard

ew camera(s) to an existing network with no additional supervi-

ion for the new cameras. However, transfer learning across net-

orks is still a largely under-addressed problem with many chal-

enges. Given multiple existing source networks and a newly in-

talled target network with limited labeled data, we first need

o find the relevance/similarity of each source network, or parts

hereof, in terms of amount of knowledge that it can transfer to

 target network. Developing efficient statistical measures for find-

ng relevance in a multi-camera network with significant changes

n viewing angle, lighting, and occlusion can be a very interest-

ng future work. Furthermore, labeled data from source networks

re often a subject of legal, technical and contractual constraints

etween data owners and customers. Thus, existing transfer learn-

ng approaches may not be directly applicable in such scenarios

here the source data is absent. However, compared to the source

ata, the well-trained source model(s) are usually freely accessi-

le in many applications and contain equivalent source knowledge

s well. Leveraging person re-identification models in absence of

ource data via knowledge distillation [61] , can be another inter-

sting direction for future research. 
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