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Abstract

Foundation Models (FMs) have demonstrated unprecedented capabilities including
zero-shot learning, high fidelity data synthesis, and out of domain generalization.
However, as we show in this paper, FMs still have poor out-of-the-box performance
on expert tasks (e.g. retrieval of car manuals technical illustrations from language
queries), data for which is either unseen or belonging to a long-tail part of the data
distribution of the huge datasets used for FM pre-training. This underlines the
necessity to explicitly evaluate and finetune FMs on such expert tasks, arguably
ones that appear the most in practical real-world applications. In this paper, we
propose a first of its kind FETA benchmark built around the task of teaching FMs
to understand technical documentation, via learning to match their graphical illus-
trations to corresponding language descriptions. Our FETA benchmark focuses
on text-to-image and image-to-text retrieval in public car manuals and sales cat-
alogue brochures. FETA is equipped with a procedure for completely automatic
annotation extractaion, allowing easy extension of FETA to more documentation
types and application domains in the future. Our automatic annotation leads to
an automated performance metric shown to be consistent with metrics computed
on human-curated annotations (also released). We provide multiple baselines and
analysis of popular FMs on FETA leading to several interesting findings that we
believe would be very valuable to the FM community, paving the way towards
real-world application of FMs for practical expert tasks currently “overlooked” by
standard benchmarks focusing on common objects.

1 Introduction
Foundation Models (FMs) is a broad term, relating to models that through their training on huge
data acquire "skills" going beyond the base training objectives [6]. They are commonly trained
using hundreds of millions of data points and a collection of base tasks either uni-modal, e.g.
only language, or multi-modal, e.g. text-image pairs. Remarkably, the skills acquired by FMs
demonstrate very good transferability to a wide variety of new downstream tasks, many times
with very limited or no data for the target task. Since their introduction in the Natural Language
Processing (NLP) domain [6, 12, 46], FMs have been applied to uni-modal [8, 12, 46] and multi-
modal [1, 14, 21, 30, 31, 32, 45, 52, 60, 62, 63] Vision & Language (V&L) scenarios, as well as
demonstrated unprecedented capabilities for high fidelity data synthesis [40, 47, 49] and out of
domain generalization [48]. However, despite the tremendous progress in FMs many gaps still remain
open with regards to reaching human level performance in some mundane tasks [56], as well as in
many human expert ones. In particular, for many types of ‘specialized’ data (e.g. illustrated technical,
scientific documentation, medical, or other expert domains data), which are of the utmost interest for
many real-world applications, FM performance is still lacking in many respects due to: (i) specialized
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Figure 1: We introduce FETA, a novel dataset and benchmark for evaluating and improving Founda-
tion (V&L) Models performance on expert data tasks. In contrast to mainstream benchmarks used
to evaluate FMs, FETA does not focus on common objects captured with consumer cameras (left),
instead providing a completely automatic pipeline for extracting (mostly other visual domains) expert
data from publicly available technical and other documentation. Also, as opposed to original CLIP,
FETA’s MIL-CLIP method can learn from multiple-hypothesis data automatically extracted from
complex document’s pages (see right) comprised of multiple images and texts without apparent 1:1
association.

data may not be present in the web-crawled internet-scale datasets [16, 45, 50] used to train FMs;
(ii) even if specialized data is present, it is deep in the long-tail of the data distribution statistics,
meaning that due to the limited capacity, or the information bottleneck [57], of the FM models,
useful representation features for this data are not significant in the FMs’ learned representation
space; (iii) commonly, a large domain gap exists between natural image common-objects biased data
and the accompanying text used for FM training and sketch-like / synthetic / non-consumer-camera
imagery commonly appearing in expert data scenarios. This suggests that to be utilized for expert
data applications, FMs need to be tuned to better represent this data, driving the under-represented
features that are necessary for such data to emerge. But how can one analyze and tune for such
effects?

Our proposed Foundation models for Expert Task Applications (FETA) benchmark and dataset is
intended to bridging the gap between the ‘common object’ oriented benchmarks (e.g. ImageNet)
currently used to evaluate V&L FM performance and more complex specialized objects (e.g. an engine
diagram, or a car mechanical part) typical to many real-world applications targeting expert tasks. To
the best of our knowledge, the FETA is the first benchmark aiming at evaluating and improving the
FMs performance in the expert data domains. The first version of FETA focuses on Text-to-Image
(T2I) & Image-to-Text (I2T) retrieval in technical documentation, specifically diverse car service
manuals from multiple manufacturers, and sales (currently IKEA annual) catalogues. Our proposed
automatic annotation process is general and can support ingestion of any variety of programmatic
PDF documents with illustrations, making FETA easily extensible to additional expert tasks and
content domains, either by us (in future versions of FETA) or by other members of the community.
The FETA is also equipped with our proposed method for automatic extraction of text-image pairs
both for fine-tuning the models as well as for automatic performance evaluation. Our method is
based on establishing multiple-hypothesis text-image correspondence via co-location of images
and surrounding text on the pages of the processed PDFs. Although completely non-curated, we
show how comparative metrics established by our proposed automatic annotation technique translate
consistently to a metric established via manually curated ground truth data, thus indicating the utility
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of the proposed automatic metric which, as explained above, effortlessly extends to any arbitrary
expert tasks and content domains we expect to be added to FETA in the future. Finally, we provide a
large set of interesting baselines on our collected FETA data including popular off-the-shelf FMs,
various methods for finetuning FMs on the train set of FETA, as well as some interesting application
of a combination of Locked and Multiple-Instance-Learning fine-tuning schemes demonstrating
significantly superior performance on both automatic as well as manually curated metrics of FETA,
paving the way to real practical applications of the proposed fine-tuning techniques.

To summarize, our key contributions are as follows: (i) We propose Foundation models for Expert
Task Applications (FETA) - first of its kind dataset and benchmark - targeting the evaluation and
improvement of the Foundation Models performance on expert data domain tasks prevalent in real-
world applications; (ii) We propose and release an automatic text-image pairs extraction pipeline
fitting any collection of illustrated programmatic PDFs or even broader documents data, making our
proposed FETA easily extensible to new content domains and expert data applications drawing from
this abundant source of expert V&L data; (iii) We propose an automatic evaluation metric for FMs
on expert tasks using our proposed data extraction pipeline and show this metric leads to consistent
models relative performance comparisons to the ones resulting from a manually curated metric
(also released as part of FETA); (iv) We provide a large collection of baselines on FETA including
out-of-the-box FMs, FETA tuned-FMs, and a novel combination of Low Ranked Adaptor finetuning
using Multiple Instance Learning schemes reaching the best performance by a large margin; (v) Our
findings corroborate our proposition that out-of-the-box FMs performance drops significantly when
moving away from common object benchmarks and entering expert domains, underlining the value
of our proposed FETA benchmark for future research towards paving the way to real-world practical
applications of FMs in expert domains. The FETA dataset is available for download here1. The code
is abailable at https://github.com/alfassy/FETA

2 Dataset Collection
2.1 Source and Description
Documents are a natural data-source to find text-image pairs, since images in documents have either
captions or at the minimum are related to their surrounding textual content. In order to obtain
real-world images, and not schematics or scientific figures, we chose documents related to consumer
goods such as product catalogues and manuals. Such documents typically provide both images of
the product and a textual description. This specific data was chosen due to several important criteria.
First, the data is abundant with a large variety of text and images. Second, the data includes images
which are not "natural" domain and belong to the long-tail distribution of the training data for the
FMs. Finally, when collecting the data we considered the legal and privacy issues such that the data
is freely available without any legal claims limiting its distribution. We downloaded 349 car service
manuals from https://www.workshopservicemanual.com/ each comprising 20 to 1602 pages.
The documents were then processed, such that all text and images were automatically extracted.
In the following sections we will describe in detail the automatic processing and annotation flow.
Additionally, FETA also includes IKEA yearly catalogues data. The data was published by [66] for
semantic based sentence recognition in images, the data is available for download2. The IKEA data
was processed identically to the car-manuals dataset and is detailed in the supplementary material.

2.2 Data Conversion
The product-related source documents are in PDF format, which is notoriously hard to extract
data from. In the past years, tools3 and cloud-services4 have been developed to convert PDF
documents [3, 54] to JSON semantically, meaning that structural elements of the document (e.g. title,
paragraphs, section-headers, tables, images, etc) are extracted semantically and easily accessible
in the final JSON document. This semantic conversion is achieved by leveraging pre-trained ML
methods for Layout-Segmentation [33, 42] & Table-Understanding [39]. In the Layout-Segmentation,
document components such as text-blocks, tables and images are visually identified using state-of-
the-art object-detection algorithms, which provide bounding-boxes for structural elements on each

1https://ai-vision-public-datasets.s3.eu.cloud-object-storage.appdomain.cloud/
FETA/feta.tar.gz

2https://github.com/ivc-yz/SSR
3https://github.com/DS4SD/deepsearch-toolkit
4https://deepsearch-experience.res.ibm.com
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Table 1: Dataset Statistics. In total, the first version of FETA contains around 56K extracted images
and around 89K pieces of extracted image related text. Additional statistics are available in Section 2
of the supplementary material.

Manufacturer Docs Avg. Pages/Doc Avg. Images/Doc Avg. Texts/Doc

Nissan 275 149 138 249
Toyota 24 107 122 180
Mazda 9 149 413 657
Chevrolet 31 169 92 128
Renault 10 169 385 596

Entire data Avg. 349 149 147 254

page. The latter allows us to geometrically link images to text via a heuristic geometric closeness
relationship. The output JSON undergoes extended post processing, aiming to reduce parsing noise.
For example: merge spatially close texts by finding connected components in a graph made by the
texts. More information available in Section 1 of the supplementary material.

2.3 Automatic Annotation
In the spirit of Multiple Instance Learning (MIL), we defined the automatic matching of each extracted
image with a set of up to five pieces of texts from the same page. Every image was paired with the
most probable text block from the left, right, top, and bottom of the figure, when available. We also
selected a text box if it was overlapping with the image. We found that in the majority of the cases, at
least one of these blocks of text is related to the image. This inherently creates the many-to-many MIL
scenario where each image is associated with multiple text instances and vice-versa. We further found
that in some cases, an image can appear in several places within the document. Since our automatic
annotation is based on the co-location of the image and text within the same page, these cases can
hurt retrieval metrics when disregarded. We thus applied a filtering process to merge all occurrences
of the same image within a single document (see Section 1.2 of the supplementary material).

2.4 Manual Annotation
Since both training and test data were automatically annotated, we chose to manually annotate a
small subset of the data in order to validate the results. For this manually annotated set we randomly
selected 15 documents and manually paired a single image with a single text within every page of
each document. The manual annotation was done using the annotation tool of the DeepSearch cloud
service, based on the automatic extraction of images and texts. As can be seen from Table 2 and Table
3, the results on the automatic and manual annotated set are highly correlated, thus strengthening
the validity of our proposed automatic annotation for testing, and underlining the scalability of our
approach in terms of adding data and future inclusion of additional expert domains.

2.5 Statistics
The Car-Manuals dataset consists of a total of 349 PDF documents from 5 car manufacturers,
namely Nissan, Toyota, Mazda, Renault, Chevrolet. Table 1 details the statistics of the dataset
by manufacturer. The IKEA-catalogues dataset contains 26 documents with 7366 pages total,
approximately 9574 images and 23927 texts automatically extracted from those pages. More details
on the IKEA-catalogues dataset, as well as analysis of the performance of our rich set of baselines on
that dataset and further data statistics is provided in Section 2 of the supplementary material.

3 Baselines
3.1 Background
Our main out-of-the-box FM baseline is the most widely used and readily available V&L FM,
CLIP [45]. CLIP was trained using a contrastive loss applied to the similarity of the textual and visual
features of all image-text pairs within each batch. This simple yet effective method has proven to
work fantastically on natural images when supplied with a huge amount (400M) of image-text pairs
collected from the Web. However, as we show in our experiments (Table 2), CLIP’s performance
on the document data based expert task is far from sufficient. This underlines the need to fine-tune
models such as CLIP on expert tasks in order to adapt the model to practical use in expert applications.
But what is the best and most scalable way to fine-tune in this case? In the case of the automatic
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document data annotation, where there are no image-text pairs but rather sets of text associated to
each image and sets of images associated with each text, we argue that the original contrastive loss
can not be used, and the proposed MIL variants, inspired by [37] from the video domain, should
be used instead. Additionally, expert data is quite diverse and significantly small compared to the
tremendous volumes of pre-training data used to make CLIP. We therefore also explore different
constrained fine-tuning strategies based on encoder-locking ideas from [64].

CLIP. The CLIP model is comprised of an image encoder and a text encoder. Let MI and MT be
the image and text encoders respectively. For a given image Ii, and a piece of text Ti, we define the
image and the text embedding vectors as the outputs of MI and MT , respectively:

xi = MI(Ii), yi = MT (Ti) (1)

Standard supervised learning assumes that the samples and targets are paired, {xi, yi}Ni=1, where N
is the size of the dataset. For a given batch of samples, B, the standard CLIP loss is a cross-entropy
loss defined as:

LCLIP = − 1

2B

(
B∑
i

log
exp(xT

i yi/σ)∑B
j=1 exp(x

T
i yj/σ)

+

B∑
i

log
exp(yTi xi/σ)∑B
j=1 exp(y

T
i xj/σ)

)
(2)

where σ is a normalization factor, often set as a learned parameter.

We propose an extension to the CLIP contrastive loss, adapting it to a MIL setting where we know
that at least on of the texts is a positive match to the image and vice versa.

3.2 MIL-CLIP
The MIL setting, relaxes the paired assumption and defines a "bag" of M targets {ymi }Mm=0 such
that at least one of the targets (e.g. texts) is a positive match to the sample (e.g. image). This weak
annotation aligns perfectly with our automatic annotation framework.

There are several ways to modify the original loss (Eq. 2) to the MIL setting. Next, we will present a
few plausible baselines.

MIL-Max. A simple yet effective method for MIL is by selecting the positive example as the
maximum value over the bag of labels. Defining m̂i = argmaxm xT

i y
m
i :

LMAX = − 1

B
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log
exp(xT

i y
m̂i
i /σ)

exp(xT
i y

m̂i
i /σ) +
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j ̸=i

∑
m exp(xT

i y
m
j /σ)

− 1
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j ̸=i

∑
m exp(ymi

Tx/σ)
(3)

MIL-SoftMax. A small modification to the MIL-Max loss is replacing the maximum with a SoftMax
weighted average of the nominator of the loss function. For convenience we first define the SoftMax
weights with scaling factor σsm as:

Sm
i =

exp(xT
i y

m
i /σsm)∑M

n=1 exp(x
T
i y

m
i /σsm)

(4)

and define the MIL-SoftMax variant as:

LSM = − 1

B
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m
i /σ)∑

m Sm
i exp(xT
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log
exp(yqi
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exp(yqi
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∑
m exp(ymi
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(5)

MIL-NCE. Recently the MIL-NCE [37] approach was proposed for visual representation learning
from uncurated videos. We adapt the MIL-NCE loss to fit the clip, contrastive loss as follows :

LNCE = − 1

B

B∑
i

log

∑
m exp(xT

i y
m
i /σ)∑B

j=1

∑
m exp(xT

i y
m
j /σ)

(6)

Following the ablation study presented in the supplementary material, unless stated otherwise we
chose the MIL-NCE version in all our experiments.

5



3.3 CLIP-LoRA

LoRA [17] proposed Low-Rank Adapters for large language models. LoRA locks the original
weights of a pretrained model and adds trainable low rank residual adapters to different model layers.
LoRA build upon the observation that in many cases learned layer weight matrices are in fact of
low-rank, hence adapting them with a low-rank constraint on the change leads to good results also
increasing efficiency and reducing over-fitting. We defer in our use of LoRA adapters both from the
original work of [17], as well as from the only reported use of this tool for V&L models so far: [55].
As opposed to [17] and [55] that injected LoRA only into query/value projections of transformer
MHSA blocks ([17]) or introduced them only to the text encoder ([55]), we found that also using
LoRA weights in all nn.Conv2d, nn.Linear and nn.Embedding layers, results in significantly bigger
performance gains. Additionally, we also apply LoRA outside just the transformer models - also to
the CLIP ResNet50 backbone image encoder where applicable.

3.4 Implementation Details
We base our code on the open project [18] https://github.com/mlfoundations/open_clip.
All our experiments used ResNet50 backbone models using the original CLIP [45] pre-trained models
(400M image-text pairs). All fine-tuning experiments were run with 5e-05 learning rate, 64 batch size,
and 20 epochs, using PyTorch DDP. We provide our code, including our automatic data annotation
and all the baselines, in the supplementary and will release it upon acceptance. All the models were
trained using either an Nvidia A100 or V100 GPU, with 8 GPUs per experiment.

4 Experiments
4.1 Data Splits
In all of the following experiments the data was split into five folds for each manufacturer and the
results presented are an average over the results of the five-fold training and testing regime. The
results are further averaged across manufacturers. Our folds are splitting on complete documents, not
on document pages, so pages from the same document never appear in both train and test. We next
present a detailed set of baseline experiments under four different settings: (i) Many-Shot: training on
four folds of a Nissan manufacturer, as it contains the largest collection of documents, and testing on
the remaining fifth fold; (ii) Zero-Shot: training on all data of all but one manufacturer, testing on all
the data of the left-out manufacturer; . (iii) One-shot: similar to Zero-Shot but adding one document
of the left-out manufacturer, testing on the remaining data of the left-out manufacturer, this is repeated
five times with a different document each time; (iv) Few-shot: similar to One-Shot but adding one
fold of the left-out manufacturer, testing on the remaining folds of the left-out manufacturer, this is
repeated five times with a different document each time.

4.2 Baseline Methods
In addition to our MIL-CLIP method we evaluate three simple CLIP-based baselines: (i) CLIP: We
test the pre-trained CLIP400M model without any further training. (ii) Concatenate: During training
we concatenate all texts from the MIL "bag" into one long text and set it as the positive example and
train using the original CLIP loss (Eq. 2). (iii) Choose-One: During training we randomly select one
of the texts from the MIL “bag” as the positive example and train using the original CLIP loss (Eq. 2).
For both Concatenate and Choose-One we test both Locked and non-Locked variants. Additional
information on the evaluation of FLAVA [52], ALBEF [31], and VilT [25] is available in Section 4.3
of the supplementary material.

4.3 Results
Table 2 presents the comparison of three baseline methods (also with or without Locking) under four
different data split settings. These empirical results lead to several interesting conclusions. First,
the CLIP model under-performs with respect to all the fine-tuning methods in the Zero-Shot and
other settings, strengthening our hypothesis that FMs indeed need to be fine-tuned for expert domain
(practical) applications such as explored in FETA, and their massive-scale pre-training is not sufficient
for this tasks on its own. Second, fine-tuning using automatically collected V&L annotations induces
significant performance improvements in many cases, especially in the Many-Shot case, which is
arguably the most practical scenario, as the annotations are automatic hence the train data can scale
easily with adding more documents. This further highlights the benefit of automatic annotation
pipeline proposed in FETA for supporting low annotation cost adaptation of V&L models to expert
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Table 2: Main Results: Image-to-Text and Text-to-Image retrieval accuracy for different baselines
under three different data-split settings. Our baselines include out-of-the-box CLIP (additional FM
results provided in Supplementary), several variants of its non-MIL and MIL fine-tuning variants.
Our experimental settings include Many-Shot (train and test on same manufacturer data with lots of
train samples), Zero-Shot (train and test on different manufacturers data), One-Shot (like Zero-Shot,
but include a single document of the tested manufacturer in training), and Few-Shot (like Zero-Shot,
but include a single fold of the tested manufacturer data in training). Results are averaged across
manufacturers. All the experiments were performed on the automatically annotated data using
five-folds and (naturally) without any overlap between train and test (on the level that pages of the
same document never appear in both train and test). The "Locked" column refers to versions trained
with locked (frozen) parameters of the image encoder MI . For reference, in FETA - the random
chance probabilities for guessing the correct text match or the correct image match are 1.14% and
0.67% respectively. Numbers in bold/blue mark the best and second-best results, respectively.

Image-to-Text Text-to-Image

Name Locked Rec@1 Rec@5 Rec@10 Rec@1 Rec@5 Rec@10

Z
er

o-
Sh

ot

CLIP [45] 9.7% 26.6% 38.1% 10.1% 26.7% 39.5%
FLAVA [52] 4.0% 16.6% 29.7% 5.5% 19.8% 34.5%
VilT [25] 2.9% 11.5% 22.0% 3.5% 14.3% 26.7%
ALBEF [31] 3.9% 16.6% 26.7% 4.4% 18.4% 31.2%
Concatenate 6.5% 20.4% 31.5% 7.1% 25.0% 38.4%
Concatenate ✓ 9.4% 25.0% 36.7% 8.1% 24.0% 37.6%
Choose-One 10.7% 27.6% 39.9% 9.3% 28.1% 41.8%
Choose-One ✓ 10.40% 26.7% 39.3% 9.20% 25.6% 37.9%
CLIP-MIL 10.5% 34.0% 48.5% 11.7% 32.9% 47.9%
CLIP-MIL ✓ 11.0% 29.2% 40.0% 9.7% 28.1% 40.6%

O
ne

-S
ho

t

CLIP [45] 9.7% 26.6% 38.1% 10.1% 26.7% 39.4%
FLAVA [52] 4.0% 16.6% 29.7% 5.5% 19.8% 34.5%
VilT [25] 2.9% 11.5% 22.0% 3.5% 14.3% 26.7%
ALBEF [31] 3.9% 16.6% 26.7% 4.4% 18.4% 31.2%
Concatenate 10.3% 27.3% 39.2% 9.5% 27.0% 40.8%
Concatenate ✓ 8.7% 24.4% 37.0% 7.9% 25.1% 38.5%
Choose-One 10.3% 27.2% 39.5% 9.4% 27.5% 41.6%
Choose-One ✓ 10.4% 28.0% 39.9% 8.9% 25.5% 37.9%
CLIP-MIL 11.0% 30.3% 43.2% 9.9% 27.9% 40.9%
CLIP-MIL ✓ 11.9% 30.3% 42.5% 10.9% 29.4% 43.2%

Fe
w

-S
ho

t

CLIP [45] 8.6% 25.6% 37.2% 9.2% 24.3% 36.6%
FLAVA [52] 3.9% 16.7% 30.1% 5.2% 18.5% 32.7%
VilT [25] 2.8% 11.1% 21.6% 3.2% 13.3% 25.4%
ALBEF [31] 3.9% 13.1% 25.5% 4.2% 17.4% 29.6%
Concatenate 9.0% 26.5% 40.3% 10.3% 29.6% 44.7%
Concatenate ✓ 8.4% 24.5% 38.5% 10.5% 29.0% 41.8%
Choose-One 11.2% 30.5% 44.2% 13.1% 31.3% 46.4%
Choose-One ✓ 11.6% 31.5% 44.7% 11.6% 29.0% 44.0%
CLIP-MIL 14.1% 36.7% 48.9% 15.0% 35.2% 50.0%
CLIP-MIL ✓ 13.8% 33.7% 47.5% 11.6% 33.0% 47.0%

M
an

y-
Sh

ot

CLIP [45] 13.8% 31.2% 41.6% 13.6% 36.4% 50.7%
FLAVA [52] 4.2% 16.1% 27.8% 6.6% 24.4% 41.0%
VilT [25] 3.1% 13.3% 23.4% 4.4% 18.3% 32.0%
ALBEF [31] 3.8% 15.8% 26.6% 5.5% 22.4% 37.5%
Concatenate 18.4% 37.8% 49.9% 15.9% 42.1% 58.3%
Concatenate ✓ 20.7% 39.7% 51.3% 16.2% 41.2% 56.2%
Choose-One 24.5% 49.9% 62.2% 21.2% 52.3% 67.2%
Choose-One ✓ 27.7% 52.7% 64.1% 21.6% 52.1% 66.5%
CLIP-MIL 32.6% 56.2% 66.7% 27.8% 59.0% 72.3%
CLIP-MIL ✓ 34.5% 56.8% 66.1% 27.2% 57.9% 70.7%
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Table 3: Results on manually curated data: Image-Text retrieval accuracy results. Models trained
on automatically annotated data in the same way as in table 2 excluding the manually annotated docs.
Models are tested on a small manually annotated subset of the data in order to verify the results of
Table 2 that were measured using our automatic annotation. Numbers in bold/blue mark the best and
second-best results, respectively.

Image-to-Text Text-to-Image

Name Locked Rec@1 Rec@5 Rec@10 Rec@1 Rec@5 Rec@10

Z
er

o-
Sh

ot

CLIP [45] 14.3% 39.3% 55.6% 14.7% 36.4% 57.0%
Concatenate 14.2% 40.2% 61.6% 11.5% 33.6% 51.9%
Concatenate ✓ 9.3% 35.4% 58.5% 11.7% 31.5% 51.5%
Choose-One 9.8% 39.1% 59.9% 13.3% 38.2% 59.9%
Choose-One ✓ 12.8% 40.5% 59.0% 14.2% 41.9% 60.0%
CLIP-MIL 14.4% 40.1% 67.8% 16.2% 40.4% 62.6%
CLIP-MIL ✓ 13.9% 41.0% 65.0% 15.1% 43.2% 60.8%

O
ne

-S
ho

t

CLIP [45] 14.3% 39.3% 55.6% 14.7% 36.4% 57.0%
Concatenate 15.7% 41.9% 63.3% 12.1% 39.1% 60.8%
Concatenate ✓ 12.4% 37.7% 54.1% 13.0% 35.3% 54.9%
Choose-One 12.7% 40.8% 60.4% 12.4% 37.8% 63.2%
Choose-One ✓ 12.4% 38.8% 62.5% 14.2% 39.5% 62.1%
CLIP-MIL 16.1% 42.7% 66.2% 14.6% 43.6% 64.0%
CLIP-MIL ✓ 15.8% 39.9% 62.6% 14.9% 41.6% 62.5%

Fe
w

-S
ho

t

CLIP [45] 12.8% 37.3% 51.7% 12.5% 32.1% 53.0%
Concatenate 12.0% 38.3% 58.9% 11.0% 32.5% 54.7%
Concatenate ✓ 8.2% 33.0% 55.4% 8.8% 28.9% 51.3%
Choose-One 11.0% 39.8% 60.9% 12.5% 36.4% 60.1%
Choose-One ✓ 9.8% 37.0% 59.5% 10.1% 35.7% 59.7%
CLIP-MIL 13.4% 41.3% 61.9% 12.7% 38.2% 60.5%
CLIP-MIL ✓ 12.9% 38.4% 60.3% 13.2% 38.6% 61.6%

M
an

y-
Sh

ot

CLIP [45] 20.0% 47.2% 71.3% 23.7% 53.4% 72.9%
Concatenate 36.8% 66.6% 84.1% 24.5% 56.5% 80.5%
Concatenate ✓ 29.9% 61.6% 81.1% 28.8% 56.4% 76.3%
Choose-One 39.0% 70.1% 83.1% 34.0% 65.0% 84.7%
Choose-One ✓ 34.6% 70.6% 83.5% 33.7% 68.3% 82.6%
CLIP-MIL 43.1% 71.4% 83.8% 40.7% 67.6% 86.5%
CLIP-MIL ✓ 43.0% 74.8% 85.7% 43.5% 70.2% 85.3%

domains defined by corpora of documents with illustrations. Third, training with the MIL paradigm
consistently boost performance with respect to other (non-MIL) baselines indicating the utility of
using MIL and variants. Fourth, locked image encoder variants demonstrate interesting trade-offs
with unlocked ones in different scenarios. We have further evaluated this in a more thorough ablation
study of this aspect in Section 4.4, also discovering the benefit of very interesting intermediate locking
options using low-rank residual adapters tuning, constituting a very exciting direction for future work.
Fifth, overall performance levels of all baselines still leave a lot of room for improvement for future
research towards practical application of FMs to (abundant) real-world expert domain application
tasks. Furthermore, Table 3 validates the results in Table 2 by measuring the performance of the same
baselines using a manually curated annotated documents set. The results are validated by observing
the consistent performance trends between the baselines in the two tables.

4.4 Additional Ablation Study - Parameter Locking
Following [64], we evaluated the performance on our CLIP-MIL method under several parameter-
locking as well as "intermediate" states. We refer to locked parameters as parameters that do not
change during training. The five different options are: (i) Unlocked: Let both MI and MT train
during fine-tuning. (ii) Locked Image: Lock MI and only let MT train. (iii) Locked Text: Lock MT

and only let MI train. (iv) Locked*: Lock both MI and MT except the last “text projection” layer
in MT . (v) CLIP-LoRA as detailed in CLIP-LoRA sub section. Table 4 clearly shows the trade-offs
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Table 4: Parameter Locking Ablation:. This table explores different variants of locking the model
parameters during MIL finetuning in the Many-Shot setting. We test locking the image encoder,
the text encoder, or both excluding the text projection layers (Locked*) and the use of Low-Rank
Adapters (LoRA) [17]. We show the interpolation between the Unlocked (rank r = 512) and the
Locked Image (rank r = 0) variants by changing the rank of the added residual adapters weight
matrices. This exploration clearly shows the trade-offs between locking and unlocking the image
encoder MI , with up to 2.1% relative improvements in some cases. Numbers in bold/blue mark the
best and second-best results, respectively.

Image-to-Text Text-to-Image

Baseline Locking Rec@1 Rec@5 Rec@10 Rec@1 Rec@5 Rec@10

CLIP-MIL

Unlocked 32.6% 56.2% 66.7% 27.8% 59.0% 72.3%
Locked Image 34.5% 56.8% 66.1% 27.2% 57.9% 70.2%
Locked Text 30.6% 54.4% 64.6% 27.8% 59.0% 71.6%
Locked* 30.1% 52.4% 63.1% 25.0% 55.7% 69.1%
LoRA[17] r=4 33.8% 57.3% 67.6% 28.9% 61.4% 74.1%
LoRA[17] r=32 35.6% 58.3% 68.1% 30.7% 62.6% 74.6%
LoRA[17] r=256 35.5% 57.7% 67.8% 30.8% 62.4% 74.4%

between locking and unlocking the image encoder MI , with up to 2.1% relative improvements in
some cases. More importantly this could be further significantly improved by low-rank intermediate
variants with up to 2-3% additional improvement. Notice that no parameters are added as these
adapters are only used for training and are fully collapsed into the model parameters at inference
time. We believe that this shows that some adaptation to the

4.5 IKEA results

Table 5 presents the results for the proposed baselines trained and tested on the IKEA dataset. For a
full review of IKEA dataset see section 2 in supplementary. For a discussion about the results, see
section 4.5 in the supllementary.

Table 5: Results on IKEA dataset using 5-fold cross-validation protocol on the entire IKEA US
early manuals data. MIL based baselines obtain significant advantages over other baselines. Numbers
in bold mark the best results while numbers in blue mark the second-best.

Image-to-Text Text-to-Image

Name Locked Rec@1 Rec@5 Rec@10 Rec@1 Rec@5 Rec@10

A
ll-

D
at

a

CLIP [45] 22.9% 43.3% 54.2% 25.5% 46.8% 59.5%
Concatenate 6.7% 13.7% 18.2% 13.2% 27.0% 35.9%
Concatenate ✓ 8.1% 15.6% 20.6% 14.0% 26.9% 35.3%
Choose-One 15.1% 30.2% 38.5% 17.9% 36.2% 46.4%
Choose-One ✓ 14.1% 28.0% 35.3% 16.4% 32.3% 41.8%
CLIP-MIL 26.8% 47.7% 57.8% 30.1% 54.4% 66.2%
CLIP-MIL ✓ 24.4% 44.4% 54.7% 27.0% 49.9% 60.5%

5 Related Work
Vision and Language. Many studies have recently addressed the problem of vision and language
on a broad scale. Some of them focused more on text-image, such as [1, 14, 21, 30, 31, 32, 45, 52,
60, 62, 63], while others explored text-conditional image generation [40, 47, 49]. Other approaches
learn strong representations from video-textual descriptions [37, 38] with or without the need for
any manual annotation. The goal of these works is to learn foundational language and vision
representations that are required for language and vision understanding. Unlike these works, we
demonstrate here that even strong models are incapable of performing basic retrieval capabilities in
technical documentation as humans do, such as diverse car service manuals and sales catalogs.

Multiple Instance Learning. Over the years, multiple instance learning methods have been applied to
a variety of weakly supervised problems including: images [20, 41, 44, 53, 61, 67], videos [5, 10, 29,
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36, 37, 51]. Typically, MIL methods are using different principles such as max-pooling [13], support
vector machine [2], discriminative clustering [4], or even attention-based neural networks [19]. In
this work, we present MIL-CLIP, an approach that combines the standard contrastive learning from
CLIP [45] with multiple instance learning [13, 23, 34]. We demonstrate how this combination leads
to the best performance and allows for practical applications of FMs in expert domains

Image-Text Retrieval. Image-text retrieval has been a long and well-known task with real-life
applications. The two main and dominate tasks are: image retrieval and text retrieval, depending
on which modality is used as the retrieved target. Previous works embedded the image and text
features into a joint embedding space to calculate the similarities between them. Most of these
works were trained by ranking loss [26, 58, 59], while more recent architectures and pre-training
approaches [11, 45, 65] have demonstrated the potential of transformer-based models and contrastive
objectives to learn image representations from text. In this work, we release a dataset containing
manuals of cars and sale catalogs, showing that even large models cannot perform well on retrieval
tasks, such as image retrieval and text retrieval. We hope it would pave the way for real practical
applications of FMs in expert domains.

Technical and expert domains with non-natural image data. While the majority of CV literature
focuses on natural images and common objects, some works have extended CV and V&L techniques
to technical and expert domains (e.g., localization for autonomous driving [7], etc.). These works can
be divided into works with mostly (i.) uni-modal focus, with such tasks as deep normal prediction
in design sketches [15], image-to-image retrieval in patents [27, 43] (interestingly [43] also show
that textual side-information can facilitate retrieval), scientific-figures classification [22], or text-to-
text generation for patent claims [28]; (ii.) multi-modal works focusing on image+text reasoning
tasks such as VQA on figures and InfoGraphics [9, 35, 24]. In contrast, FETA focuses on a more
direct multi-modal V&L evaluation of out-of-the-box and fine-tuned, large-scale pre-trained, V&L
models using text-to-image and image-to-text retrieval tasks, which are better aligned with the
commonly used contrastive objectives used to pre-train V&L models. Moreover, FETA is open-ended,
offering a convenient ingestion pipeline for producing automatic annotation and for the evaluation
and fine-tuning of expert domains available as document corpora. This pipeline enables relatively
straightforward future extensions to expert domains such as patents, figures and info-graphics.

6 Conclusion
We have proposed the first of its kind Foundation models for Expert Task Applications (FETA)
benchmark and dataset focused on evaluating Foundation Models on expert data tasks. In our first
release, FETA focuses on expert data from technical and other documents. It is accompanied with
an automatic data extraction pipeline allowing for easy extension of the benchmark to larger data
scales, other expert domains, and additional visual modalities by ingesting public PDF documents –
an abundant data resource. FETA is accompanied with an extensive set of baselines and ablations on
different training setups and finetuning strategies allowing us to conclude that: (i) Although strong on
benchmarks containing common objects captured with consumer cameras, FMs still struggle with
expert domain data, both due to its natural domain gap as well as absence or statistical insignificance
of such data in the distribution of the massive datasets used to pre-train FMs; (ii) While our baselines
still leave a lot of room for improvement contingent on future research, as expected of any good
and challenging benchmark, in some situations such as many-shot fine-tuning, our best baseline
performance suggests a possibility of practical application; (iii) Our diverse experimental settings
help establishing best practices for fine-tuning FMs under different data regimes, and our code is
easily extendable to evaluate any arbitrary FM in a similar collection of settings; (iv) Our automatic
annotation pipeline and associated automatic performance metric lead to similar conclusions with
regards to relative performance comparisons between different models and fine-tuning strategies,
as the metric computed on the manually curated data, once again suggesting the scalability of the
proposed approach to grow to larger data and additional expert tasks.

Limitations & Future Work. While the first version of FETA includes close to 150K images
and texts, it is still a drop in the ocean of available technical documentation and other documents
available for yet unexplored set of different expert V&L data domains. Luckily, FETA’s automatic data
extraction and annotation pipeline allows to scale FETA easily. Future work includes expanding FETA
to additional domains and continually evaluating new FMs as they are released to the community.
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