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Abstract

Unsupervised domain adaptation which aims to adapt models trained on a labeled
source domain to a completely unlabeled target domain has attracted much attention
in recent years. While many domain adaptation techniques have been proposed
for images, the problem of unsupervised domain adaptation in videos remains
largely underexplored. In this paper, we introduce Contrast and Mix (CoMix),
a new contrastive learning framework that aims to learn discriminative invariant
feature representations for unsupervised video domain adaptation. First, unlike
existing methods that rely on adversarial learning for feature alignment, we utilize
temporal contrastive learning to bridge the domain gap by maximizing the similarity
between encoded representations of an unlabeled video at two different speeds
as well as minimizing the similarity between different videos played at different
speeds. Second, we propose a novel extension to the temporal contrastive loss by
using background mixing that allows additional positives per anchor, thus adapting
contrastive learning to leverage action semantics shared across both domains.
Moreover, we also integrate a supervised contrastive learning objective using target
pseudo-labels to enhance discriminability of the latent space for video domain
adaptation. Extensive experiments on several benchmark datasets demonstrate the
superiority of our proposed approach over state-of-the-art methods. Project page:
https://cvir.github.io/projects/comix.

1 Introduction

Unsupervised domain adaptation (UDA), which alleviates the requirement of large amounts of
annotated data by adapting a model learned on a labelled source domain to an unlabelled target
domain, has drawn a great deal of attention in the last few years [12, 80]. Much progress has been
made in developing deep UDA methods by minimizing the cross-domain divergence [39, 70], adding
adversarial domain discriminators [20, 74], and image-to-image translation techniques [26, 51].
However, despite impressive results on commonly used benchmark datasets (e.g., [61, 75, 57]), most
of the methods have been developed only for images and not for videos, where the annotation task is
often more complicated requiring tedious human labor in comparison to images.

More recently, very few works have attempted deep UDA for video action recognition by directly
matching segment-level features [8, 27, 50, 42] or with attention weights [11, 53]. However, (1)
trivially matching segment-level feature distributions by extending the image-specific approaches,
without considering the rich temporal information may not alone be sufficient for video domain
adaptation; (2) prior methods often focus on aligning target features with source, rather than exploiting
any action semantics shared across both domains (e.g., difference in background with the same action:
videos in the top row of Figure 1 are from the source and target domain respectively, but both capture
the same action walking); (3) existing methods often rely on complex adversarial learning which is
unwieldy to train, resulting in very fragile convergence.
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Meanwhile, self-supervised pretext tasks like predicting rotation and translation have recently emerged
as an alternative to adversarial learning for unsupervised domain adaptation in images [38, 71]. While
these works show the promising potential of self-supervised learning in aligning source and target
domains, the more recent very successful contrastive representation learning [9, 23, 52] has never
been used to adapt video action recognition models to target domains. Motivated by this, in this paper,
we explore the following natural, yet important question: whether and how contrastive learning
could be exploited for the challenging and practically important task of unsupervised video domain
adaptation for human action recognition?

Figure 1: Background Mixing. Top row shows two
representative videos from the source and target domain
respectively. Both videos capture the same action “walk-
ing” with different backgrounds. Bottom row shows
videos obtained after mixing target background with
source video and vice versa.

To this end, we introduce Contrast and Mix
(CoMix), a simple yet effective approach based
on contrastive learning to adapt video action
recognition models trained on a labeled source
domain to unlabelled target domains. First,
we propose to represent video as a graph and
then utilize temporal contrastive self-supervised
learning over the graph representations as a
nexus between source and target domains to
align features, without requiring any additional
adversarial learning, as most prior works do in
video domain adaptation [8, 11, 53]. Specifi-
cally, we maximize the similarity between en-
coded representations of the same video at two
different speeds as well as minimize the sim-
ilarity between different videos played at dif-
ferent speeds, leveraging the fact that changing
video speed does not change an action on both
domains. While minimization of contrastive
self-supervised losses in both domains simulta-
neously helps in domain alignment, it ignores
action semantics shared across them as the loss treats each domain individually. To alleviate this,
we incorporate new synthetic videos into the temporal contrastive objective, which are obtained
by mixing background of a video from one domain to a video from another domain, as shown in
Figure 1 (bottom). Importantly, since mixing background doesn’t change the temporal dynamics,
we introduce pseudo-labels for the mixed videos to be same as the label of the original videos and
consider additional positives per anchor (see Figure 2), which encourages the model to generalize to
new samples that may not be covered by temporal contrastive learning in hand. In other words, mixed
background video of an input sample in the embedding space act as small semantic perturbations
that are not imaginary, i.e., they are representative of the action semantics shared across source and
target domains. Finally, rather than relying only on the supervision of source categories to learn a
discriminative representation, we generate pseudo-labels for the target samples in every batch and
then harness the label information using a temporal supervised contrastive term, that pushes the
examples from the same class close and the examples from different classes further apart (Figure 2:
right). While our modified contrastive losses are motivated by the supervised contrastive learning [30],
we use pseudo labels for exploiting shared action semantics and discriminative information from
target domain, instead of using true labels as an alternative to supervised cross-entropy loss (which is
not present for target samples). To the best of our knowledge, ours is the first work that successfully
leverages contrastive learning in an unified framework to align cross-domain features while enhancing
discriminabilty of the latent space for unsupervised video domain adaptation.

To summarize, the main contributions of our work are as follows:

• We introduce Contrast and Mix (CoMix), a new contrastive learning framework to learn discrimina-
tive invariant feature representations for unsupervised video domain adaptation. Overall, CoMix is
simple and easy to implement which perfectly fits into modern mini-batch end-to-end training.

• We propose a novel extension to temporal contrastive loss by using background mixing that allows
additional positives per anchor, thus adapting contrastive learning to leverage action semantics
shared across both domains. We also integrate a supervised contrastive learning objective using
pseudo label information from the target domain to enhance discriminabilty of the latent space.
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Figure 2: Temporal Contrastive Learning with Background Mixing and Target Pseudo-labels. Temporal
contrastive loss (left) contrasts a single temporally augmented positive (same video, different speed) per anchor
against rest of the videos in a mini-batch as negatives. Incorporating background mixing (middle) provides addi-
tional positives per anchor possessing same action semantics with a different background alleviating background
shift across domains. Incorporating target pseudo-labels (right) additionally enhances the discriminabilty by
contrasting the target videos with the same pseudo-label as positives against rest of the videos as negatives.

• We conduct extensive experiments on several challenging benchmarks (UCF-HMDB [8], Jester [53],
and Epic-Kitchens [50]) for video domain adaptation to demonstrate the superiority of our approach
over state-of-the-art methods. Our experiments show that CoMix delivers a significant performance
increase over the compared methods, e.g., CoMix outperforms SAVA [11] (ECCV’20) by 3.6% on
UCF-HMDB [8] and TA3N [8] (ICCV’19) by 9.2% on Jester [45] benchmark respectively).

2 Related Work
Action Recognition. Much progress has been made in developing a variety of ways to recognize
video actions, by either applying 2D-CNNs [6, 37, 47, 79] or 3D-CNNs [4, 17, 22, 73]. Many
successful architectures are usually based on the two-stream model [67], processing RGB frames and
optical-flow in two separate CNNs with a late fusion in the upper layers [29]. SlowFast network [18]
employs two pathways for recognizing actions by processing a video at different frame rates. Mitigat-
ing background bias in action recognition has also been presented in [10, 36]. Despite remarkable
progress, these models critically depend on large labeled datasets which impose challenges for
cross-domain action recognition. In contrast, our work focuses on unsupervised domain adaptation
for action recognition, with labeled data in source domain, but only unlabeled data in target domain.
Unsupervised Domain Adaptation. Unsupervised domain adaptation has been studied from mul-
tiple perspectives (see reviews [12, 80]). Representative works minimize some measurement of
distributional discrepancy [21, 39, 65, 70] or adopt adversarial learning [5, 20, 40, 56, 74] to generate
domain-invariant features. Leveraging image translation [25, 26, 51] or style transfer [15, 91] is
also another popular trend in domain adaptation. Deep self-training that focus on iteratively training
the model using both labeled source data and generated target pseudo labels have been proposed
in [46, 90]. Semi-supervised domain adaptation leveraging a few labeled samples from the target
domain has also been proposed for many applications [14, 33, 63]. A very few methods have
recently attempted video domain adaptation, using adversarial learning combined with temporal
attention [8, 42, 53], multi-modal cues [50], and clip order prediction [11]. While existing video
DA methods mainly rely on adversarial learning (which is often complicated and hard to train) in
some form or other, they do not take any action semantics shared across domains into considera-
tion. Our approach on the other hand, successfully leverages temporal contrastive learning to learn
domain-invariant features while exploiting shared action semantics through background mixing for
video domain adaptation. Recently, self-supervised tasks like predicting rotation and translation have
been used for unsupervised domain adaptation and generalization, mainly for images [3, 38, 71].
By contrast, we focus on the more challenging problem of domain adaptation for human action
recognition, where our goal is to align domains by learning consistent features representing different
speeds of unlabeled videos. We further propose a temporal supervised contrastive loss to ensure
discriminabilty by considering pseudo-labeling in an unified framework for video domain adaptation.
Contrastive Learning. Contrastive representation learning is becoming increasingly attractive due
to its great potential to leverage large amount of unlabeled images [9, 16, 23, 48, 24, 52] and
videos [19, 31, 54, 60, 59, 78]. Speed of a video is investigated for self-supervised [1, 28, 77, 86] and
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semi-supervised learning [68, 94] unlike the problem we consider in this paper. Recent works [84, 87]
utilize contrastive learning with different augmentations for learning unsupervised representations
of graph data. Contrastive learning has also been recently used in supervised settings, where labels
are used to guide the choice of positive and negative pairs [30]. While our approach is inspired by
these, we propose a novel temporal contrastive learning framework with background mixing for video
domain adaptation, which to our best knowledge has not been explored in the literature.
Image Mixtures. Mixup regularization [89] and its variants [2, 76, 88] that train models on virtual
examples constructed as convex combinations of pairs of images and labels have been used to improve
the generalization of neural networks. Very few methods apply Mixup in domain adaptation, but
mainly to stabilize the domain discriminator [62, 83, 85] or to smoothen the predictions [44]. Several
works have recently leveraged the idea of different image mixtures [34, 66] for improving contrastive
representation learning. Our proposed background mixing can be regarded as an extension of this
line of research by adding background of a video from one domain to a video from another domain,
to explore shared semantics while learning domain-invariant features for action recognition.

3 Proposed Method

Unsupervised video domain adaptation aims to improve the model generalization performance by
transferring knowledge from a labeled source domain to an unlabeled target domain. Formally, we
have a set of labelled source videos Dsource={(Vi{s}, yi)}NS

i=1 and a set of unlabelled target videos
Dtarget= {Vi{t}}NT

i=1, with a common label space L. Given these data sets, our goal is to learn a
single model for action recognition that performs well on previously unseen target domain videos.

Supervised Learning

Contrast and Mix

Labels
Unlabeled Videos

Source Model Target Model

ʺWalkingʺ

Source Domain Target Domain

Background Mixed Videos

Unlabeled Videos

Background Mixed Videos

Target Pseudo-labels

Labels

Feature Alignment

F G F G

Figure 3: An Overview of our Approach. Given la-
beled videos in source domain and only unlabeled videos
in target domain, CoMix adopts supervised learning on
source videos, jointly with temporal contrastive learning
on both domains to align features. Additional cross-
domain contrastive supervision is obtained using back-
ground mixing across domains and using target pseudo-
labels for enhancing discriminability of the latent space.
CoMix provides a more simpler yet effective approach
than adversarial learning for aligning both domains.

Approach Overview. Figure 3 illustrates an
overview of CoMix. Our action recognition
model consists of a feature encoder F with a
temporal graph encoder G. Given a video, the
feature encoder F first extracts clip-level fea-
tures, and then a graph encoder G utilizes those
features to model intrinsic temporal relations
for providing a robust encoded representation
for action recognition. CoMix adopts supervised
learning on the source videos, as the labels are
available, jointly with two novel temporal con-
trastive learning loss terms to align the features
for domain adaptation. Specifically, we maxi-
mize the similarity of the encoded representation
of the fast version of a video (represented by f
clips) with that of the slow version of the same
video (represented by s clips, where s < f ) as
well as minimize the similarity of the representa-
tions of different videos within each of the two
domains. However, as temporal contrastive loss
treats each domain individually, we further add
two new sets of synthetic videos that contain source videos mixed with target background and vice
versa, respectively for introducing the background variations among the videos while keeping the
action semantics intact. Finally, we generate pseudo-labels for the target videos in every mini-batch
and utilize them using another temporal supervised contrastive term. This term contrasts target videos
with the same pseudo-label as positives to learn features discriminative for the target domain. We
now describe each of our proposed components individually in detail in the following subsections.

Video Representation. Capturing long-range temporal structure in videos is crucial for action recog-
nition, which in turn affects the overall generalization performance of a model when adapting across
domains. Thus, we adopt a graph convolutional neural network (G) on top of a 3D convolutional
neural network (F) as our video feature encoder. Specifically, for a video V with n clips, the
feature extractor F maps the clips into the corresponding sequence of features, which alone do not
incorporate the rich temporal structure of the video. Therefore, we use the temporal graph encoder
which constructs a fully connected graph on top of the clip-level features, with learnable edge weights
through a parameterized adjacency matrix, as in [81]. With these graph representations, we apply a
graph convolutional neural network with three layers and finally perform average pooling over all
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the node features to output the encoded representation of the video V. In summary, the end-to-end
network G(F(.)) : V→ Rc takes a sequence of clips from a video as input and outputs confidence
scores (logits) over the number of classes c for recognizing actions.

Temporal Contrastive Learning. Given video representations, our goal is to leverage contrastive
self-supervised learning in both domains for unsupervised domain adaptation. To this end, we use
temporal speed invariance in videos as a proxy task and enforce this with a pairwise contrastive loss.
Specifically, our key idea is to represent videos in two different temporal speeds (fast and slow) to
obtain their encoded representations and then consider the fast and slow version representations of
the same video to constitute positive pairs, while versions from different videos constitute negative
pairs. Formally, let us consider a mini-batch of B videos {V1

n,V
2
n, ...,V

B
n } with corresponding

feature representations {z1n, z2n, ..., zBn }, where each of the videos Vi
n is represented using n number

of sampled clips. Let f be the number of clips used to represent the fast version of the videos
(forwarded through the base branch), and s be that used for the slow version (forwarded through the
auxiliary branch), with s < f , as shown in Figure 4. Given positive and negative pairs, the model is
trained such that it learns to maximize agreement between positive pairs, while minimizing agreement
between negative pairs. This is achieved by employing a temporal contrastive loss (Ltcl) as

Ltcl(V
i
f ,V

i
s) = − log

h(zif , z
i
s)

h(zif , z
i
s) +

B∑
j=1,j 6=i
v∈{s,f}

h(zif , z
j
v)

(1)

where, h(u, v) = exp( uᵀv
‖u‖2‖v‖2

/τ) is the exponential of cosine similarity measure and τ is
the temperature hyperparameter [9]. We use f = 16, and choose s from {12, 8, 4} follow-
ing a random uniform distribution in every training iteration where randomness encourages
the model to learn from a variety of temporal speed variations to learn robust representations.

Figure 4: Temporal Contrastive Loss.
Given unlabeled videos, we maximize simi-
larity between encoded representations of the
same video at two different speeds (fast and
slow) as well as minimize similarity between
different videos played at different speeds.

Background Mixing. As temporal contrastive loss treats
each domain individually, it ignores shared action seman-
tics which is vital for domain alignment. Thus, we propose
a new perspective of temporal contrastive loss through
background mixing, specifically to alleviate the cross-
domain background shift, as seen in Figure 1. The basic
idea is to obtain the background frames for the videos in
one domain and mix it with the frames of the videos from
the other domain. More details on how we extract the
backgrounds are provided in supplementary material. This
introduces variation in each of the domains by adding new
synthetic videos with the same action semantics as earlier,
but possessing background from the other domain. Given
two videos Vi{s} ∈ Dsource and Vi{t} ∈ Dtarget with
corresponding background frames (single image per video)
as BGi{s} and BGi{t}, we obtain the synthetic videos in
both domains by a convex combination of the background
with each of the frames in the videos as follows.

V̂i{s} = (1− λ) ·Vi{s} + λ ·BGi{t}

V̂i{t} = (1− λ) ·Vi{t} + λ ·BGi{s} (2)

where, λ is sampled from the uniform distribution [0, γ],
V̂i{s} and V̂i{t} correspond to the video from source do-
main with target background and vice versa, respectively.
The main operation in our proposed background mixing
is to generate a synthetic video with background from the
other domain while retaining the temporal action seman-
tics intact. Since mixing background doesn’t change the motion pattern of a video which actually
defines an action, we assume both the original and mixed video to be of the same action class and go
beyond single instance positives in Eq. 1 by adding additional positives per anchor, as in supervised
contrastive learning [30] (see Figure 2 for an illustrative example). The modified temporal contrastive
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loss with background mixing (Lbgm) is defined as below:

Lbgm(Vi
f ,V

i
s) = −

1

|P(zif )|
∑

p∈P(zi
f )

log
h(zif ,p)∑

p∈P(zi
f )

h(zif ,p) +
B∑

j=1,j 6=i
v∈{s,f}

{
h(zif , z

j
v) + h(zif , ẑ

j
v)
}
(3)

where, P(zif ) ≡ {zis, ẑis, ẑif} is the set of positives for the anchor zif , and ẑis/f represent the feature
representation of the corresponding background-mixed video depending on the domain to which
Vi belongs. Note that for anchor zif , there are 3 positive pairs: (a) slow version of the mixed video
(ẑis), (b) fast version of the mixed video (ẑif ), and (c) slow version of the original video (zis). Also,
the loss is computed for all positive pairs in the mini-batch, i.e., (Vi

f ,V
i
s), (V

i
s,V

i
f ), (V̂

i
f , V̂

i
s),

and (V̂i
s, V̂

i
f ). Simultaneous minimization of Lbgm in both source and target domains not only

learns temporal dynamics but also helps to better align the features for video domain adaptation
by leveraging action semantics shared across both domains. Our background mixing is especially
effective in video domain adaptation as it enforces the model to be robust to domain changes (i.e.,
difference in background as shown in Figure 1) while leaving the action semantics intact. Further, it
can also be adopted as a data augmentation strategy for improved generalization in standard video
action recognition: we leave this as an interesting future work.

Incorporating Target Pseudo Labels. While temporal contrastive loss with background mixing
helps in aligning the learned representations across the two domains, we cannot fully rely on source
categories to learn features discriminative for target domain. Therefore, we propose to use a supervised
contrastive loss [30] over pseudo-labeled target samples, an extended version of temporal contrastive
loss in Eqn. 1 to enhance discriminabilty by allowing many samples per anchor to be positive, so that
videos of the same pseudo-label can be attracted to each other in the embedding space. Let A be the
subset of videos assigned pseudo-labels using a confidence threshold, from a mini-batch of B videos,
the supervised temporal contrastive loss for incorporating target pseudo-labels (Ltpl) is defined as

Ltpl(V
i
f ,V

i
s) = −

1

|P(zif )|
∑

p∈P(zi
f )

log
h(zif ,p)∑

p∈P(zi
f )

h(zif ,p) +
∑

a∈A,a6=i
v∈{s,f}

h(zif , z
a
v)

(4)

where, P(zif ) ≡ {zps , z
p
f : p ∈ A & ỹp = ỹi} \ {zif} is the set of all positives for video Vi

f and ỹi

represent the pseudo-label for target video Vi. Note that the set of positives (P(.)) includes all the
target domain samples (fast and slow) classified as the same action class as that of the anchor (zif )
through the pseudo labels. Following [95], we leverage a temporal ensemble prediction for a given
video Vi from the target domain to produce robust and better-calibrated version of pseudo-labels.
Specifically, we obtain the encoded (logits) representations zif and zis from the base and auxiliary
branch respectively and then compute the pseudo-label as ỹi = argmaxk softmax(zifused), where
zifused represents the mean of both logits. We consider the class index k on which the model is most
confident among c classes, provided it is higher than a confidence threshold.

Optimization. Besides the losses Lbgm and Ltpl, we minimize the standard supervised cross-entropy
loss (Lce) on the labelled source videos as follows.

Lce(V
i{s}, yi) = −

c∑
k=1

(yi)k log(G(F(Vi{s})))k (5)

Overall, the loss function for training our model involving both source and target domain data is,

LCoMix = L{s}
ce + λbgm(L{s}

bgm + L{t}
bgm) + λtplL{t}

tpl (6)

where λbgm and λtpl are weights to balance the impact of individual loss terms. To reduce the
number of hyper-parameters, we use the same weight λbgm for both L{s}

bgm and L{t}
bgm. Notably, for

the semi-supervised domain adaptation setting, we also use supervised cross-entropy loss for the few
labeled target domain videos in addition to the source domain videos.
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4 Experiments

Datasets. We evaluate the performance of our approach using several publicly available benchmark
datasets for video domain adaptation, namely UCF-HMDB [7], Jester [53], and Epic-Kitchens [50].
UCF-HMDB (assembled by authors in [7]) is an overlapped subset of the original UCF [69] and
HMDB datasets [32], containing 3, 209 videos across 12 classes. Jester (assembled by authors in [53])
is a large-scale cross-domain dataset that contains videos of humans performing hand gestures [45]
from two domains, namely Source and Target that contain 51, 498 and 51, 415 video clips respectively
across 7 classes. Epic-Kitchens (assembled by authors in [50]) is a challenging egocentric dataset
that consists of videos across 8 largest action classes from three domains, namely D1, D2 and D3,
corresponding to P08, P01 and P22 kitchens on the full Epic-Kitchens dataset [13]. We use the
standard training and testing splits provided by the authors in [7, 53, 50] to conduct our experiments
on each dataset. More details about the datasets can be found in the supplementary material.

Baselines. We compare our approach with the following baselines. (1) source only (a lower bound)
and supervised target only (an upper bound) baselines that trains the network using labeled source
data and labeled target data respectively, (2) popular UDA methods based on adversarial learning (e.g.,
DANN [20], and ADDA [74]), (3) existing video domain adaptation methods, including SAVA [11],
TA3N [8], ABG [42] and TCoN [53]. We also compare with Source + Target (which simply uses all
labelled data available to it to train the network) and ENT [63] in semi-supervised domain adaptation
experiments. We directly quote the numbers reported in published papers when possible and use
source code made publicly available by the authors of TA3N [8] on both Jester and Epic-Kitchens.

Implementation Details. Following [11], we use I3D [4] as the backbone feature encoder network,
initialized with Kinetics pre-trained weights. For the temporal graph encoder, we use a 3-layer GCN
similar to [81]. We follow the standard ‘pre-train then adapt’ procedure used in prior works [74, 11]
and train the model with only source data to provide a warmstart before the proposed approach is
employed. The dimension of the features extracted from the I3D encoder is 1024 which is the same
as the node-feature dimension of the initial layer of the GCN. The final layer of the GCN has its
node-feature dimension same as the number of action classes in a dataset and uses a mean aggregation
strategy to output the logits. We use a clip-length of 8-frames and train all the models end-to-end
using SGD with a momentum of 0.9 and a weight decay of 1e-7. We use an initial learning rate of
0.001 for the I3D and 0.01 for the GCN in all our experiments. We use a batch size of 40 equally
split over the two domains, where each batch consists of n clips from the same video, where n is 16
for the fast version (f ) and 12, 8, or 4 for the slow version (s). For inference, we use 16 uniformly
sampled clips per video and use the base branch of the model to recognize the action. The temperature
parameter is set to τ = 0.5. We extract backgrounds from videos using temporal median filtering [58]
and empirically set γ = 0.5 for background mixing. We use a pseudo-label threshold of 0.7 in all our
experiments and smooth the cross-entropy loss with ε = 0.1, following [72, 49]. We set λbgm and
λtpl from {0.01, 0.1} depending on the dataset. We report the average action recognition accuracy
over 3 random trials. We use 6 NVIDIA Tesla V100 GPUs for training all our models.

Table 1: Results on UCF-HMDB Dataset. CoMix establishes
new state-of-the-art for unsupervised video domain adaptation on
UCF-HMDB, by significantly outperforming existing methods.

Method Backbone UCF→HMDB HMDB→UCF Average
DANN [20] ResNet-101 75.3 76.4 75.8
JAN [41] ResNet-101 74.7 79.3 77.0
AdaBN [35] ResNet-101 75.5 77.4 76.4
MCD [64] ResNet-101 74.4 79.3 76.8
TA3N [8] ResNet-101 78.3 81.8 80.1
ABG [42] ResNet-101 79.1 85.1 82.1
TCoN [53] ResNet-101 87.2 89.1 88.1
Source Only I3D 80.3 88.8 84.5
DANN [20] I3D 80.7 88.0 84.3
ADDA [74] I3D 79.1 88.4 83.7
TA3N [8] I3D 81.4 90.5 85.9
SAVA [11] I3D 82.2 91.2 86.7
CoMix I3D 86.7 93.9 90.3
Supervised Target I3D 95.0 96.8 95.9

Results on UCF-HMDB. Table 1
shows results of our method and
other competing approaches on UCF-
HMDB dataset. Our CoMix frame-
work achieves the best average
performance of 90.3%, which is
about 2.2% more than the previ-
ous state-of-the-art performance on
this dataset. While comparing with
the recent method, SAVA [11] using
the same I3D backbone, CoMix ob-
tains 4.5% and 2.7% improvement
on UCF→HMDB and HMDB→UCF
task respectively, without relying on
frame attention or adversarial learning.
These improvements clearly show that our temporal graph contrastive learning with background
mixing is not only able to better leverage the temporal information but also shared action semantics,
essential for effective video domain adaptation. In summary, CoMix outperforms all the existing video
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Table 2: Results on Jester and Epic-Kitchens Datasets. CoMix outperforms TA3N [8] by 9.2% on the
challenging Jester dataset. On Epic-Kitchens, CoMix achieves the best performance on 5 out of 6 transfer tasks
including the best average performance among all compared methods.

Method Backbone Jester Epic-Kitchens AverageSource→Target D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3
Source Only I3D 51.5 35.4 34.6 32.8 35.8 34.1 39.1 35.3
DANN [20] I3D 55.4 38.3 38.8 37.7 42.1 36.6 41.9 39.2
ADDA [74] I3D 52.3 36.3 36.1 35.4 41.4 34.9 40.8 37.4
TA3N [8] I3D 55.5 40.9 39.9 34.2 44.2 37.4 42.8 39.9
CoMix I3D 64.7 38.6 42.3 42.9 49.2 40.9 45.2 43.2
Supervised Target I3D 95.6 57.0 57.0 64.0 64.0 63.7 63.7 61.5

DA methods on UCF-HMDB, showing the efficacy of our approach in learning more transferable
features for cross-domain action recognition without using any target labels.

Results on Jester and Epic-Kitchens. On the large-scale Jester dataset, our proposed approach,
CoMix also outperforms other DA approaches by increasing the Source Only (no adaptation) accuracy
from 51.5% to 64.7%, as shown in Table 2 (left). In particular, our approach achieves an absolute
improvement of 9.2% over TA3N [8], which corroborates the fact that CoMix can well handle not
only the appearance gap but also the action gap present on this dataset (e.g., for the action class
“rolling hand”, source domain contains videos of “rolling hand forward”, while the target domain
only consists of videos of “rolling hand backward”). Table 2 (right) summarizes the results on
Epic-Kitchens, which is another challenging dataset consisting of total 6 transfer tasks with a large
imbalance across different action classes. Overall, CoMix obtains the best on 5 tasks including the
best average performance of 43.2%, compared to only 35.3% and 39.9% achieved by the source
only and TA3N [8] respectively. While the improvements achieved by our approach are encouraging
on both Jester and Epic-Kitchens, the accuracy gap between CoMix and supervised target is still
significant (30.9% on Jester and 18.3% on Epic-Kitchens), which highlights the great potential for
improvement in future for unsupervised video domain adaptation.

Comparison with MM-SADA [50]. MM-SADA[50] is another state-of-the-art approach for video
domain adaptation that leverages the idea of using multi-modal (RGB and Optical flow) data to
learn better domain invariant representations. The approach has two main components: adversarial
learning and multi-modal supervision. While CoMix does not use optical flow features anywhere, the
RGB-only version of MM-SADA still uses optical flow features for the multi-modal self-supervision.
Interestingly, CoMix (43.2%) shows very competitive performance using only RGB features when
compared to the above (43.9%) on the Epic-Kitchens dataset. Additionally, we train MM-SADA
(RGB-only) (but perform multimodal supervision using both RGB and flow following the original
paper [50]) on UCF-HMDB dataset and notice that CoMix outperforms it by a margin of 3% on
an average (UCF→ HMDB: 82.2% vs 86.7%, HMDB→ UCF: 91.2% vs 93.9%, Avg: 86.7% vs
90.3%), showing its effectiveness in unsupervised video domain adaptation.

Table 3: Semi-Supervised Domain Adaptation on UCF-HMDB
and Jester Datasets. CoMix significantly outperforms all the com-
pared methods in both one-shot and three-shot settings.

Method UCF→HMDB HMDB→UCF Jester(S)→ Jester(T)
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

Source + Target 83.2 85.8 90.3 93.7 53.8 55.0
DANN [20] 85.4 86.9 92.1 93.1 55.1 59.9
ADDA [74] 83.6 86.3 91.2 93.0 59.5 61.3
ENT [63] 85.6 88.6 92.8 95.8 58.6 61.5
CoMix 88.4 93.1 95.4 96.6 65.3 69.6

Semi-supervised Domain Adapta-
tion. To further study the robustness
of our proposed approach, we extend
the unsupervised domain adaptation
to a semi-supervised setting, where
one (1-shot) and three target labels (3-
shot) per class are available for train-
ing. Table 3 shows that our simple ap-
proach consistently outperforms the
adversarial DA methods (DANN [20],
and ADDA [74]) including the semi-supervised method, ENT [63], on both UCF-HMDB and Jester
datasets. Remarkably, CoMix with three target labels per class improves the performance of Source +
Target baseline from 93.7% to 96.6%, which is only 0.2% lower than the supervised target upper
bound (in Table 1) on HMDB→UCF task (96.6% vs 96.8%). These results well demonstrate the
utility of our proposed approach in many practical applications where annotating a few videos per
class is typically possible and therefore worth doing given the boost it provides.

Effectiveness of Individual Components. As seen from Table 4, the vanilla temporal contrastive
learning (TCL) achieves an average accuracy of 85.8% on UCF-HMDB while 57.5% on Jester
(1st row), which is already better than DANN [20], and ADDA [74] (ref. Table 1,2), showing its
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effectiveness over adversarial learning in aligning features. While both background mixing (BGM)
and incorporation of target pseudo-labels (TPL) individually improves the performance over TCL
(+2.9%, +5.6% using BGM and +1.9%, +5.4% using TPL, respectively), addition of both of
them leads to the best average performance of 90.3% on UCF-HMDB dataset and 64.7% on the
Jester dataset. This corroborates the fact that both cross-domain action semantics (through BGM)
and discriminabilty (through TPL) of the latent space play crucial roles in video domain adaptation in
addition to the vanilla contrastive learning for aligning features.

Table 4: Ablation Study on UCF-HMDB and
Jester. TCL: Temporal Contrastive Learning, BGM:
Background Mixing, TPL: Target Pseudo-Labels.

TCL BGM TPL U→H H→U Average Jester(S)→Jester(R)
3 7 7 83.3 88.4 85.8 57.5
3 3 7 86.2 91.2 88.7 63.1
3 7 3 83.5 91.9 87.7 62.9
3 3 3 86.7 93.9 90.3 64.7

Table 5: Comparison with MixUp Strategies.
Background mixing outperforms other alternatives in
leveraging shared action semantics on UCF-HMDB.

Method U→H H→U Average Jester(S)→Jester(R)
Gaussian Noise 84.7 90.6 87.6 54.3
Video MixUp 85.1 91.7 88.4 62.2
Video CutMix 84.6 92.1 88.3 58.6
Background Mixing 86.7 93.9 90.3 64.7

Comparison with Different MixUp Strategies. We explore the effectiveness of background mixing
by comparing with different MixUp strategies (Table 5): (a) Gaussian Noise: adding White Gaussian
Noise to videos in both domains; (b) Video MixUp [89]: directly mixing one video with another
from a different domain, as in images; (c) Video CutMix [88]: randomly replacing a region of a
video with another region from the other domain. The proposed way of generating synthetic videos
by mixing background of a video from one domain to a video from another domain, outperforms
all three alternatives on UCF-HMDB as well as on the more challenging Jester dataset. Note that
while both MixUp and CutMix destroy motion pattern of original video, background mixing keeps
semantic consistency without changing the temporal dynamics.

Effect of Background Pseudo-labels. We investigate the effect of pseudo-labels on background
mixed videos (i.e., both videos considered to be of same action class while creating positives) by
simply adding them as unlabeled videos without any modification to the contrastive objective in Eq. 1.
CoMix without background pseudo-labels decreases the performance from 90.3% to 89.0% (−1.3%:
Table 6), showing its effectiveness in leveraging action semantics shared across both domains.

Effect of Source Contrastive Learning. CoMix adopts contrastive learning on both source and
target domains, although we already have supervised cross-entropy loss on source videos. We observe
that applying contrastive learning on target domain only, by removing source contrastive objective
L{s}
bgm from Eq. 6, lowers down the performance from 90.3% to 88.4% (−1.9%) on UCF-HMDB

(Table 6). This shows the importance of training the model using the same temporal invariance
objective on both domains simultaneously to achieve effective alignment across domains.

Table 6: Ablation Study on Contrastive Learning.
Method U→H H→U Average
CoMix 86.7 93.7 90.3
– w/o Background Pseudo-labels 85.8 92.2 89.0
– w/o Source Contrastive Learning 85.1 91.8 88.4
– w/o Random Speed Invariance 86.4 92.8 89.6

Effect of Random Speed Invariance. We re-
move randomness in video speed from the aux-
iliary branch of our temporal contrastive learn-
ing framework and observe that CoMix (with 16
clips in the base branch and only 8 clips in the
auxiliary branch) leads to an average top-1 ac-
curacy of 89.6% compared to 90.3% (−0.7%:
Table 6), showing the importance of random speed invariance in learning robust features.

Self-Training vs Supervised Contrastive Learning. We directly use self-training that uses cross-
entropy loss on target pseudo labels instead of L{t}

tpl and find that the average performance drops to
88.7% on UCF-HMDB, indicating the advantage of supervised contrastive objective in enhancing
discriminability of the latent space by successfully leveraging label information from target domain.

Table 7: Baseline Comparisons w/ GCN Represen-
tations on UCF-HMDB and Jester Datasets.

Method (w/ GCN) U→H H→U Average Jester(S)→Jester(R)
Source Only 82.5 87.7 85.1 54.0
DANN [20] 80.0 86.3 83.2 62.9
TA3N [8] 52.5 72.4 62.3 51.7
CoMix 86.7 93.9 90.3 64.7

Effect of Graph Representation. (a) Removal
of Graph Representation from CoMix: We exam-
ine the effect of graph representation for videos
and find that by removing GCN from our frame-
work lowers down the performance from 90.3%
to 88.1% on UCF-HMDB dataset, which shows
that graph contrastive learning is more useful in
capturing the temporal dependencies, essential for video domain adaptation. (b) Effect of Graph
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Source Only TCL TCL w/ BGM TCL w/ BGM & TPL (CoMix)

Figure 5: Feature Visualizations using t-SNE. Plots show visualization of our approach with different
components on UCF→HMDB task. Blue and red dots represent source and target data respectively. Features for
both target and source domain become progressively discriminative and improve from left to right by adoption
of our novel components within a temporal contrastive learning framework. Best viewed in color.

Representation on Baseline Methods: Additionally, in Table 7 we compare with domain adversarial
adaptation methods DANN [20] and TA3N [8] including the Source only baseline with GCN feature
representation on both UCF-HMDB and Jester datasets. CoMix improves the Source only accuracy by
5.2% and 10.7% respectively on UCF-HMDB and Jester datasets. Furthermore, CoMix outperforms
DANN [20] with the same GCN equipped as ours, on both datasets (+7.1%, +1.8%, respectively)
showing its effectiveness over adversarial learning in aligning features for video domain adaptation.
TA3N [8] performs very poorly (62.3% and 51.7%) when equipped additionally with graph repre-
sentations. We believe this is because TA3N already utilizes Temporal Relational Network [92] for
modeling temporal relations, which probably hinders in learning GCN features for successful domain
adaptation in videos. (c) Alternatives for Graph Representation: We replace GCN using MLP/LSTM
of similar complexity and notice that both alternatives are inferior to GCN on UCF-HMDB (MLP:
88.1%, LSTM: 84.3%, GCN: 90.3%), which shows the effectiveness of GCN in our contrastive
learning framework for capturing the temporal dependencies, essential for video domain adaptation.

Effect of Background Extraction Method. We experiment with a different background extraction
strategy [93] that uses Gaussian Mixture Models (GMM) to extract the backgrounds and observe
that the very simple and fast strategy based on temporal median filtering [58] outperforms GMM
by 2.3% on average on UCF-HMDB (UCF→HMDB: 85.3% vs 86.7%, HMDB→UCF: 90.7% vs
93.9%, Avg: 88.0% vs 90.3%). Note that our CoMix framework is agnostic to the method used for
background extraction and can be incorporated with any other background extraction techniques for
videos, e.g., learnable background segmentation strategies such as [82, 55].

Feature Visualizations. We use t-SNE [43] to visualize the features learned using different com-
ponents of our CoMix framework. As seen from Figure 5, alignment of domains including discrim-
inability improves as we adopt “TCL” and “BGM” to the vanilla Source only model. The best results
are obtained when all the three components “TCL”, “BGM” and “TPL” i.e., CoMix are added and
trained using an unified framework (Eq. 6) for unsupervised video domain adaptation. Additional
results and analysis including more qualitative examples are included in the supplementary material.

5 Conclusions
In this paper, we introduce a new end-to-end temporal contrastive learning framework to bridge the
domain gap by learning consistent features representing two different speeds of the unlabeled videos.
We also propose two novel extension to temporal contrastive loss by using background mixing and
target pseudo-labels, that allows additional positive(s) per anchor, thus adapting contrastive learning to
leverage cross-domain action semantics and label information from the target domain respectively in
an unified framework, for learning discriminative invariant features. We demonstrate the effectiveness
of our approach on three standard datasets, outperforming several competing methods.
Broader Impact. Our research can help reduce burden of collecting large-scale supervised data in
many real-world applications of human action recognition by transferring knowledge from auxiliary
datasets. The positive impact that our work could have on society is in making technology more
accessible for institutions and individuals that do not have rich resources for collecting and annotating
large-scale video datasets. Negative impacts of our research are difficult to predict, however, it
shares many of the pitfalls associated with standard deep learning models such as susceptibility to
adversarial attacks and lack of interpretablity. Other adverse effects could be potential attrition in
jobs in certain sectors of economy where fewer employees (security guards, nurses, etc.) are needed
to monitor human activities as a result of wider adoption of automated video recognition systems.
Acknowledgements. This work was partially supported by the ISIRD Grant EEE.
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