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A Full Details on the Datasets and Tasks

CityScapes. The CityScapes dataset [3] consists of high resolution street-view images. We use this
dataset for two tasks: semantic segmentation and depth estimation, as in [7]. We adopt 19-class
annotation for semantic segmentation and use the official train/test splits for experiments. During the
training, all the input images are resized to 321 x 321 by random flipping, cropping and rescaling and
we test on the full resolution 480 x 640.

NYU v2. The NYUv2 dataset [9] is consisted with RGB-D indoor scene images. We use this dataset
in two different scenarios. First, we consider semantic segmentation and surface normal prediction
together [8, 5] and then, use depth prediction along with semantic segmentation and surface normal
prediction for experimenting on a 3-task scenario, as in [7]. We use 40-class annotation for semantic
segmentation and the official train/val splits which include 795 images for training and 654 images
for validation. We use the publicly available surface normals provided by [5] in our experiments.
During the training, we resize the input images to 224 x 224 and test on the full resolution 256 x 512.

Tiny-Taskonomy. Taskonomy [13] is large-scale dataset consisting of 4.5 million images from over
500 buildings with annotations available for 26 tasks. Considering the huge size of full Taskonomy
dataset (∼12TB in size), we use its officially released tiny train/val/test splits instead of the full
dataset. Tiny Taskonomy consists of 381,840 indoor images from 35 buildings with annotations
available for 26 tasks. Following [12], we sampled 5 representative tasks out of 26 tasks for our
experiments, namely Semantic Segmentation, Surface Normal Prediction, Depth Prediction, Keypoint
Detection and Edge Detection. We use the official train/test splits that include images from 25
buildings for training and images from 5 buildings for testing. This dataset is more challenging as the
model has to learn semantic, 3D and 2D structures at the same time for solving these tasks.

DomainNet. DomainNet [10] is a recent benchmark for multi-source domain adaptation in object
recognition. It is one of the large-scale domain adaptation benchmark with 0.6m images across six
domains (clipart, infograph, painting, quickdraw, real, sketch) and 345 categories. We consider each
domain as a task and use the official train/test splits in our experiments.

Text Classification. We perform text classification on a group of 10 publicly available datasets
from [2], namely ag_news, amazon_review_full, amazon_review_polarity, dbpedia, sogou_news,
yahoo_answers, yelp_review_full, yelp_review_polarity, SST-1 and SST-2. These datasets include
both multi-class and binary classification tasks. We consider classification within a dataset as task
and use the official train/test splits provided by the datasets in our experiments.
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Table 1: Hyper-parameters for NYU v2 2-task learning, CityScapes 2-task learning, NYU v2 3-task
learning and Tiny-Taskonomy 5-task learning. We provide the learning rates (weight lr and policy lr)
including λseg , λsn, λdepth, λkp and λedge as the task weightings for Semantic Segmentation, Surface Normal
Prediction, Depth Prediction, Keypoint Prediction and Edge Detection respectively. λsp and λsh are the weights
for sparsity regularization (Lsparsity) and sharing encouragement (Lsharing) respectively in policy learning.

Dataset weight lr policy lr λseg λsn λdepth λkp λedge λsp λsh
NYU v2 2-task 0.001 0.01 1 20 - - - 0.05 0.05

CityScapes 0.0001 0.01 1 - 20 - - 0.01 0.1
NYU v2 3-task 0.001 0.01 1 20 3 - - 0.001 0.05

Tiny-Taskonomy 0.001 0.01 1 3 2 7 7 0.001 0.005

Table 2: CityScapes 2-Task Learning. Our proposed AdaShare achieves the best performance (bold) on five
out of seven metrics and second best (underlined) on one metric across Semantic Segmentation and Depth
Prediction using less than 1/2 parameters of most baselines.

Model # Params
↓

Semantic Seg. Depth Prediction

mIoU ↑ Pixel
Acc ↑

Error↓ δ, within ↑
Abs Rel 1.25 1.252 1.253

Single-Task 2 40.2 74.7 0.017 0.33 70.3 86.3 93.3
Multi-Task 1 37.7 73.8 0.018 0.34 72.4 88.3 94.2

Cross-Stitch 2 40.3 74.3 0.015 0.30 74.2 89.3 94.9
Sluice 2 39.8 74.2 0.016 0.31 73.0 88.8 94.6

NDDR-CNN 2.07 41.5 74.2 0.017 0.31 74.0 89.3 94.8
MTAN 2.41 40.8 74.3 0.015 0.32 75.1 89.3 94.6
DEN 1.12 38.0 74.2 0.017 0.37 72.3 87.1 93.4

AdaShare 1 41.5 74.9 0.016 0.33 75.5 89.8 94.9

B Implementation Details

Our training is separated into two phases: the Policy Learning Phase and the Re-training Phase. For
NYU v2 [4] and CityScapes [3], we update the network 20,000 iterations for both the Policy Learning
and Re-training Phases. For Tiny-Taskonomy [13], the network is trained for 100,000 iterations in the
Policy Learning Phase and 30,000 in the Re-training Phase. In the Policy Learning Phase, we warm
up the network by 20% of total iterations. We train all baselines with the same number of iterations
with it in the Re-training Phase to form a fair comparison. In both phases, we use the early stop to get
the best performance during the training. In Table 1, we provide the learning rate and loss weightings
per dataset. We use the same parameter set for our model and baselines.

C Implementation of Baselines

We implement and adapt Cross-Stitch [8], Sluice [11], NDDR-CNN [5], MTAN [7], and DEN [1]
to the ResNet architecture following the details in paper and their released code. For Cross-Stitch
and Sluice, we insert the linear feature fusion layers after each residual block. For Sluice, we
use the orthogonality constraint between two subspaces of the layer-wise feature space [11]. We
add each NDDR-layer for feature fusion after each group of blocks, e.g. conv1_x, conv2_x, as
mentioned in [5]. For MTAN, we adapt the attention module which was designed for VGG-16
encoder networks to every residual block in ResNet. In each attention module, we keep the same
convolution layers and change input/output channels and spatial dimensions to match the ResNet’s
architecture 1. Please refer to [7] for more details. Moreover, instead of 7-class segmentation in
[7], we report the standard 19-class segmentation in our work. We also experiment with 7-class
segmentation, AdaShare achieves average 4% improvement on 5 metrics using 58.5% of parameters
fewer than MTAN. For DEN [1], we consult their public code for implementation details and use
the same backbone and task-specific heads with AdaShare for a fair comparison. We empirically
set ρ = 1 in DEN to get better performance (compared to ρ = 0.1). For Stochastic Depth [6], we
randomly drop blocks for each task (with a linear decay rule pL = 0.5 in our implementation) during
the training and use all blocks for each task in test.

1Note that it would cause the difference in the number of parameters.
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Table 3: NYU v2 3-Task Learning. Our proposed method AdaShare achieves the best performance (bold) on
ten out of twelve metrics across Semantic Segmentation, Surface Normal Prediction and Depth Prediction using
less than 1/3 parameters of most of the baselines.

Model # Params ↓
Semantic Seg. Surface Normal Prediction Depth Prediction

mIoU ↑ Pixel Acc ↑ Error ↓ θ, within ↑ Error ↓ δ, within ↑
Mean Median 11.25◦ 22.5◦ 30◦ Abs Rel 1.25 1.252 1.253

Single-Task 3 27.5 58.9 17.5 15.2 34.9 73.3 85.7 0.62 0.25 57.9 85.8 95.7
Multi-Task 1 24.1 57.2 16.6 13.4 42.5 73.2 84.6 0.58 0.23 62.4 88.2 96.5

Cross-Stitch 3 25.4 57.6 17.2 14.0 41.4 70.5 82.9 0.58 0.23 61.4 88.4 95.5
Sluice 3 23.8 56.9 17.2 14.4 38.9 71.8 83.9 0.58 0.24 61.9 88.1 96.3

NDDR-CNN 3.15 21.6 53.9 17.1 14.5 37.4 73.7 85.6 0.66 0.26 55.7 83.7 94.8
MTAN 3.11 26.0 57.2 16.6 13.0 43.7 73.3 84.4 0.57 0.25 62.7 87.7 95.9
DEN 1.12 23.9 54.9 17.1 14.8 36.0 73.4 85.9 0.97 0.31 22.8 62.4 88.2

AdaShare 1 30.2 62.4 16.6 12.9 45.0 71.7 83.0 0.55 0.20 64.5 90.5 97.8

Table 4: Tiny-Taskonomy 5-Task Learning. AdaShare outperforms the baselines on 3 out of 5 tasks using less
than 1/5 parameters of most baselines. While DEN is competitive in terms of number of parameters, AdaShare
outperforms DEN with an average improvement of 10.5% over all the metrics.

Models # Params ↓ Seg ↓ SN ↑ Depth ↓ Keypoint ↓ Edge ↓
Single-Task 5 0.575 0.707 0.022 0.197 0.212
Multi-Task 1 0.596 0.696 0.023 0.197 0.203

Cross-Stitch 5 0.570 0.679 0.022 0.199 0.217
Sluice 5 0.596 0.695 0.024 0.196 0.207

NDDR-CNN 5.41 0.599 0.700 0.023 0.196 0.203
MTAN 4.51 0.621 0.687 0.023 0.197 0.206
DEN 1.12 0.737 0.686 0.027 0.192 0.203

AdaShare 1 0.562 0.702 0.023 0.191 0.200

D Full Comparison of All Metrics

In this section, we provide the full comparison of all metrics in CityScapes 2-Task Learning, NYU-v2
3-Task Learning and Tiny-Taskonomy 5-Task Learning (see Table 2-4).

E FLOPs and Inference Time

We report FLOPs of different multi-task learning baselines and their inference time for all tasks of
a single image. Table 5 shows that AdaShare reduces FLOPs and inference time in most cases by
skipping blocks in some tasks while not adopting any auxiliary networks.

F Policy Visualizations

We visualize the policy and sharing patterns learned by AdaShare in NYU-v2 2-Task Learning,
CityScapes 2-Task Learning and NYU-v2 3-Task Learning (see Figure 1). The observations of policy
visualization in the main paper still hold in these scenarios.

We experiment on five tasks (Semantic Segmentation, Surface Normal Prediction, Depth Prediction,
Keypoint Prediction and Edge Prediction) for Tiny-Taskonomy dataset. In the main paper (see
Section 4.1), we visualize the policy decision for five tasks. In this section, we further investigate the
sharing patterns of subset of tasks (see Figure 2), e.g., Semantic Segmentation and Surface Normal

Table 5: FLOPs and Inference Time Comparison among Cross-stitch, Sluice, NDDR-CNN, MTAN, DEN
and AdaShare. AdaShare consumes fewer FLOPs and shorter inference time in most scenarios.

Models GFLOPs Inference Time (ms)
NYU v2
2-Task

CityScapes
2-Task

NYU v2
3-Task

Taskonomy
5-Task

NYU v2
2-Task

CityScapes
2-Task

NYU v2
3-Task

Taskonomy
5-Task

Cross-Stitch 19.71 37.06 55.59 92.64 11.48 21.29 32.36 57.64
Sluice 19.71 37.06 55.59 92.64 11.48 21.29 32.36 57.64

NDDR-CNN 20.98 38.32 57.21 100.55 11.14 20.21 30.63 52.34
MTAN 24.07 44.31 58.43 82.99 15.85 29.68 40.08 60.96
DEN 21.84 39.18 57.71 94.77 14.69 26.10 38.30 62.41

AdaShare 18.48 33.35 50.13 87.75 10.87 19.15 28.96 51.01
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Figure 1: Policy Visualization. We visualize the learned policy logits A in NYU-v2 2-Task Learning,
CityScapes 2-Task Learning and NYU-v2 3-Task Learning. Best viewed in color.
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Figure 2: Policy Visualization of subset of tasks on Tiny-Taskonomy. We visualize the sharing patterns
of subset of tasks: {Semantic Segmentation (Seg), Surface Normal Prediction (SN)}, {Seg, Depth Prediction
(Depth)} and {Seg, SN and Depth}. For example, in (a), Seg and SN share 14 out of 16 blocks in total and Seg
owns 2 task-specific blocks. Best viewed in color.

Prediction (Figure 2.(a)), Semantic Segmentation and Depth Prediction (Figure 2.(b)) and Semantic
Segmentation, Surface Normal Prediction and Depth Prediction (Figure 2.(c)). These subset of tasks
are same as the tasks considered in NYU v2 2-Task Learning, CityScapes 2-Task Learning and NYU
v2 3-Task Learning respectively. In each subset of tasks, we both have shared blocks and task-specific
(or not shared by all tasks) blocks. The sharing patterns help the model to share the knowledge
between tasks when necessary and own the individual knowledge for a single task.

G Class-wise Segmentation Performance

The performance of Semantic Segmentation can be easily affected by both Surface Normal Prediction
and Depth Prediction tasks on NYU v2 dataset, but our method mitigates this negative interference
and further improves the performance. In this section, we closely investigate the performance (Pixel
Accuracy) per class and their relationship with the number of labeled pixels. From Figure 3, we find
that we improve the performance of most classes including those with less labeled data compared to
MTAN [7] (the most competitive MTL baseline in semantic segmentation performance).

H Qualitative Visualization

In this section, we visualize the results of Multi-Task, MTAN (the best baseline), DEN (ICCV 2019)
and AdaShare in NYU v2 3-task learning. From the comparison (see Figure 4), we observe that
AdaShare predicts the class label more accurately in Semantic Segmentation; predicts the normal
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Figure 3: Change in Pixel Accuracy for Semantic Segmentation classes of AdaShare over MTAN (blue
bars). The class is ordered by the number of pixel labels (the black line). Compare to MTAN, we improve the
performance of most classes including those with less labeled data.
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Figure 4: Qualitative Visualization of Multi-Task, MTAN, DEN and AdaShare Performance in NYU v2
3-task Learning. The red boxes represent the regions of interest. Our proposed method, AdaShare gives more
accurate prediction and clearer contour in Semantic Segmentation (Seg), Surface Normal Prediction (SN) and
Depth Prediction (Depth). Best viewed in color.
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vector closer to the ground truth in Surface Normal Prediction; gives clearer contour of object in
Semantic Segmentation, Surface Normal Prediction and Depth Prediction.

I Ablation Studies on CityScapes

We present four groups of ablation studies in CityScapes 2-Task Learning to test our learned policy,
the effectiveness of different training losses and optimization method (Table 6). Similar to ablation
studies on NYU-v2 3 task learning (in the main paper), our proposed AdaShare outperforms its
variants in most of individual metrics and overall performance.

Table 6: Ablation Studies on CityScapes 2-Task Learning. T1: Semantic Segmentation, T2: Depth Prediction

Model
T1: Semantic Seg. T2: Depth Prediction

mIoU ↑ Pixel Acc ↑ Error ↓ δ, within ↑
∆T1 ↑ Abs Rel 1.25 1.252 1.253

∆T2 ↑
∆T ↑

Stochastic Depth 41.0 74.2 +0.7 0.016 0.37 71.0 86.0 92.9 -1.2 -0.3
Random # 1 40.7 74.6 +0.8 0.016 0.35 74.7 88.2 94.0 +1.8 +1.3
Random # 2 41.2 74.9 +1.4 0.017 0.36 74.1 88.2 93.7 -0.2 +0.6

w/o curriculum 40.4 74.8 -1.0 0.017 0.33 75.1 88.9 94.5 0.0 -0.5
w/o Lsparsity 40.8 74.8 +0.8 0.016 0.34 73.8 89.2 94.7 +2.5 +1.7
w/o Lsharing 41.5 74.9 +1.8 0.016 0.35 74.0 88.7 94.4 +1.8 +1.8

AdaShare-Instance 41.5 74.7 +1.6 0.016 0.33 74.4 89.5 94.9 +3.4 +2.5
AdaShare-RL 40.2 74.4 -0.2 0.018 0.36 71.7 87.4 93.7 -2.3 -1.2

AdaShare 41.5 74.9 +1.8 0.016 0.33 75.5 89.8 94.9 +3.8 +2.8

J Full Comparison of Ablation Studies on NYU-v2 3-Task

In addition to the relative performance of ablation studies in NYU-v2 3-Task Learning, we provide
the full comparison of all metrics (see Table 7).

Table 7: Ablation Studies in NYU v2 3-Task Learning.

Model
Semantic Seg. Surface Normal Prediction Depth Prediction

mIoU ↑ Pixel Acc ↑ Error ↓ θ, within ↑ Error ↓ δ, within ↑
Mean Median 11.25◦ 22.5◦ 30◦ Abs Rel 1.25 1.252 1.253

Stochastic Depth 26.4 58.5 16.6 13.4 42.6 72.9 84.7 0.60 0.22 58.8 87.7 96.9
Random #1 26.4 59.7 16.9 13.9 41.5 71.6 84.2 0.61 0.23 59.0 87.4 96.7
Random #2 28.4 60.9 16.7 13.0 44.7 71.9 83.0 0.56 0.21 62.7 89.7 97.6

w/o curriculum 27.9 60.5 17.0 13.1 44.1 71.4 82.6 0.58 0.21 63.0 89.0 96.8
w/o Lsparsity 25.8 57.6 16.9 14.0 41.6 70.9 83.6 0.63 0.23 58.0 86.3 96.5
w/o Lsharing 26.6 59.8 16.5 12.9 44.8 72.3 83.4 0.56 0.21 64.0 89.7 97.4

AdaShare-Instance 27.3 55.0 17.0 13.8 41.3 72.1 83.4 0.56 0.21 64.0 89.7 90.6
AdaShare-RL 26.9 56.9 18.3 14.7 39.0 69.0 81.7 0.74 0.27 51.7 83.3 95.7

AdaShare 30.2 62.4 16.6 12.9 45.0 71.7 83.0 0.55 0.20 64.5 90.5 97.8
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