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ABSTRACT
While machine learning approaches to visual recognition offer great
promise, most of the existing methods rely heavily on the avail-
ability of large quantities of labeled training data. However, in the
vast majority of real-world settings, manually collecting such large
labeled datasets is infeasible due to the cost of labeling data or the
paucity of data in a given domain. In this paper, we present a novel
Adversarial Knowledge Transfer (AKT) framework for transfer-
ring knowledge from internet-scale unlabeled data to improve the
performance of a classifier on a given visual recognition task. The
proposed adversarial learning framework aligns the feature space of
the unlabeled source data with the labeled target data such that the
target classifier can be used to predict pseudo labels on the source
data. An important novel aspect of our method is that the unlabeled
source data can be of different classes from those of the labeled tar-
get data, and there is no need to define a separate pretext task, unlike
some existing approaches. Extensive experiments well demonstrate
that models learned using our approach hold a lot of promise across
a variety of visual recognition tasks on multiple standard datasets.
Project page is at https://agupt013.github.io/akt.html.
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Target DataSource Data

(a) Transfer Learning (Source: Labeled, Target: Labeled)

(b) Unsupervised Domain Adaptation (Source: Labeled, Target: Un-
labeled)

(c) Semi-Supervised Learning (Source: Unlabeled, Target: Labeled)

(d) AKT (Ours) (Source: Unlabeled, Target: Labeled)

Figure 1: Comparison of different learning paradigms. Our
proposed approach Adversarial Knowledge Transfer (AKT)
transfers knowledge from unlabeled source data to the la-
beled target dataset without requiring them to have the
same distribution or label space. Best viewed in color.1

1 INTRODUCTION
Deep learning approaches have recently shown impressive per-
formance on many visual tasks by leveraging large collections of
labeled data. However, such strong performance is achieved at a
cost of creating these large datasets, which typically requires a
great deal of human effort to manually label samples.

Recently, much progress has been made in developing a variety
ways such as transfer learning [31, 35, 49], unsupervised domain
adaptation [11, 29, 30] and semi-supervised learning [1, 3, 14, 23,
32, 42, 43, 45, 45, 54] to overcome the lack of labeled data in tar-
get domain. While these approaches have shown to be effective in
many tasks, they often depend on existence of large scale anno-
tated data to train a source model [50] (in case of transfer learning:
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Fig. 1a) or assume that unlabeled data comes from a similar distribu-
tion with some domain gap (e.g., across animated and real images
in case of unsupervised domain adaptation: Fig. 1b) or have the
same data and label distribution as of the labeled data (in case of
semi-supervised learning: Fig. 1c). On the other hand, self-taught
learning or self-supervised learning [6, 17, 27, 34, 40, 47] methods
can transfer knowledge to the target task using unlabeled source
data, which may not have the same distribution and the same label
space as that of the target task. In particular, unlabeled data is first
used to learn feature representation using a pretext task and then
the learned feature is adapted to the target labeled dataset through
finetuning. However, despite their reasonable performance, it is
still unclear how to design efficient pretext tasks for specific down-
stream tasks. Defining a pretext task is a challenging problem on
its own merit [19].

In this paper, we propose a novelAdversarialKnowledgeTransfer
(AKT) framework for transferring knowledge from large-scale un-
labeled data without the need to define pretext tasks. Our approach
transfers knowledge from unlabeled source data to the labeled tar-
get data without requiring them to have the same distribution or
label space (see Fig. 1d). The proposed adversarial learning helps to
align the feature space of unlabeled source data with labeled target
data such that the target classifier can be used to predict pseudo-
labels on source data. Using the pseudo labels of source data, we
jointly optimize the classifier with the labeled target dataset. Unlike
other self-supervised methods [34, 52], we do not employ two stage
training where a model is first trained on a pretext task and then
finetuned on target task. Instead, our method operates just like a
solver, which updates the model with labeled and unlabeled data
simultaneously, making it highly efficient and convenient to use.

Our approach is motivated by the observation that many ran-
domly downloaded unlabeled images (e.g., web images from other
object classes–which are much easier to obtain than images specif-
ically of the target classes) contain basic visual patterns (such as
edges, corners) that are similar to those in labeled images of the
target dataset. Thus, we can transfer these visual patterns from
the internet-scale unlabeled data for learning an efficient classi-
fier on the target task. Note that the source and target domains in
our approach may have some relationship, but we do not require
them to have the same distribution or label space while transferring
knowledge from the unlabeled data.

1.1 Approach Overview
An overview of our approach is illustrated in Figure 2. Given a
small labeled target data and large-scale unlabeled source data, our
objective is to boost the performance of the target classifier by
exploiting relevant information from unlabeled samples as com-
pared to using only the labeled target data. To this end, we adopt
an adversarial approach to train the target classifier that consists of
three modules: the classifier network M, the pseudo label generator
G and the discriminators, DI for instance-level feature alignment
and DG for group-level feature alignment. Note that learning the
classifier M is our main goal.

In our approach, to train the target classifier, (1) we first input the
target samples to the classifier network M to extract the features. (2)
We then input the source samples to the pseudo label generator G to

extract their features and pseudo-labels. (3) We use features of the
target and source samples as input to both the discriminatorsDI and
DG to distinguish whether the instance-level and group-level input
features are from the source or target domain respectively. While
instance-level discriminator tries to align individual samples from
source domain to the target domain, the group level discriminator
aligns one batch of source samples with one batch of target samples
by considering feature means. With these two adversarial losses,
the network propagates gradients from DI and DG to G, which
encourages generation of similar feature distributions of source
samples in the target domain. (4) Finally, we pass target samples
and source samples to the classifier M to compute the classification
loss on target samples with their labels and source samples with
the pseudo labels generated from the pseudo-label generator G.

1.2 Contributions
To summarize, we address a novel and practical problem in this
paper - how to leverage information contained in the unlabeled data
that does not follow the same class labels or generative distribution
as the labeled data. Towards solving this problem, we make the
following contributions.

(1) We propose a novel adversarial framework for transferring
knowledge from unlabeled data to the labeled data without any
explicit pretext task, making it highly efficient.

(2) We perform extensive experiments on multiple datasets and
show that our method achieves promising results, while comparing
with state-of-the-art methods, without requiring any labeled data
from the source domain.

2 RELATEDWORK
Our work relates to four major research directions: semi-supervised
learning, domain adaptation, self-training and self-taught learning.

Semi-Supervised Learning has been studied from multiple
perspectives (see review [4]). A number of prior works focus on
adding regularizers to the model training which prevent overfitting
to the labeled examples [14, 23, 42, 45]. Various strategies have
been studied, including manifold regularization [3], regularization
with graphical constraints [1], and label propagation [54]. In the
context of deep neural networks, semi-supervised learning has also
been extensively studied using ladder networks [3], temporal en-
sembling [23], stochastic transformations [43], virtual adversarial
training [32], and mean teacher [45]. While most of the existing
semi-supervised methods consider the unlabeled set to have the
same distribution as the labeled set, we do not assume any correla-
tion between unlabeled data and classification tasks of interest.

Domain Adaptation aims to transfer knowledge from the la-
beled source data to the unlabeled target data assuming that both
contain exactly the same number of classes [11, 29, 30]. In con-
trast, our work focuses on the opposite case of knowledge transfer
without any assumption on the label space. Though open-set do-
main adaptation [28, 36, 41] does not consider exactly the same
classes, but they still have a few classes of interest that are shared be-
tween source and target data. In contrast, we don’t require them to
have the same distribution or shared label space while transferring
knowledge from unlabeled data.
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Figure 2: Overview of different operations occurring per batch in the proposed approach. Given a small target dataset, with
true labels, and a large amount of unlabeled source data, (a) we first forward pass both labeled and unlabeled samples through
the classifier M and the pseudo-label generator G, respectively, to extract their features.We then train a instance-level discrim-
inator DI to distinguish between target and source features for each instance and a group-level discriminator DG to distinguish
between mean of target and source features in a batch. (b) Next, we update G to fool both DI and DG using adversarial loss. (c)
We copyweights of softmax layer from M to G and generate pseudo-labels for unlabeled samples.We then update the classifier
M, which is the main output of our approach, using both labeled target and pseudo-labeled source data. Best viewed in color.

Self-Training is a learning paradigm where information from
a small set of labeled data is exploited to estimate the pseudo labels
of unlabeled data. Pseudo labeling [2, 26] is a commonly used tech-
nique where a model trained on the label set is first used to predict
the pseudo labels of unlabeled set and jointly trained with both
labeled and unlabeled data. However, this may result in incorrect
labeling if the initial model learned from labeled instances is over-
fitted. Moreover, it makes an implicit assumption that the source
sample features are well aligned with the target data which may
not be true. In contrast, our approach makes no such assumption
and trains a generator to produce more reliable pseudo-labels by
aligning source sample features with the target data distribution.

Self-Taught Learning or Self-Supervised Learning mostly
defines a pretext task to learn the feature representation from a
large unlabeled set and then finetunes the learned model on the
target task involving a much smaller labeled set. Some methods
define the pretext task as denoising auto-encoder where the task is
data reconstruction at the pixel level from partial observations [46].
The colorization problem [24, 52] is also a notable example, where
the task is to reconstruct a color image given its gray scale version.
Image inpainting [39] is also used as a pretext task, where the goal
is to predict a region of the image given the surrounding. Solving
Jigsaw puzzles [33] or its variant [34] has been used as pretext task
for learning visual features from unlabeled data. However, defining
pretext tasks for certain applications is a challenging problem on
its own merit [19]. While our approach is related to self-taught
learning, unlike existingworks that often employ two stage training,
we exploit unlabeled data along with labeled data using an end-
to-end framework which updates the classifier with labeled and
unlabeled data simultaneously, making it highly efficient.

3 METHODOLOGY
We propose anAdversarialKnowledge Transfer (AKT) framework
for transferring knowledge from unlabeled to labeled data without
requiring any correspondence across the label spaces. Our goal is
to leverage unlabeled images from other object classes which are
much easier to obtain than images of the target classes to improve
the test accuracy on the target task. We first precisely define the
problem that we aim to solve in this work and then present our
knowledge transfer approach followed by the optimization details.

3.1 Problem Statement
Consider a labeled dataset Xt = {(x1

t ,y
1
t ), (x2

t ,y
2
t ), · · · , (xnt ,ynt )}

and an unlabeled source dataset Xs = {x1
s ,x

2
s , . . . ,x

m
s }, where

yit ∈ IRc is the class label of target sample xit , c is the total number
of target classes andm >> n. Our objective is to generate pseudo-
labels ȳs = {ȳ1

s , ȳ
2
s , . . . , ȳ

m
s } for unlabeled samples in the label

space of the target domain such that it improves the performance
of the classifier when trained jointly. More specifically, we aim to
use the unlabeled set Xs along with Xt to boost the performance
of the classifier compared to using only Xt .

3.2 Adversarial Knowledge Transfer
Let us define the classifier M(x), x ∈ Xt ∪Xs using a deep convolu-
tional neural network and the pseudo-label generator G(x), x ∈ Xs
with the same architecture as the classifier. The goal of pseudo-label
generator is to predict the labels of the unlabeled source samples,
ȳs in such a way so that the source samples seem to have been
drawn from the labeled data distribution. However, since the un-
labeled source samples do not follow the same label space as the
target data, we need feature alignment across unlabeled and labeled
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samples such that more reliable pseudo-labels can be generated
for the unlabeled source samples. To achieve this, we introduce
two discriminators, namely instance-level and group-level discrim-
inator which act as feature aligners between the classifier,M, and
the pseudo-label generator, G. The instance-level discriminator, DI ,
learns to detect whether the feature is from the classifier or pseudo-
label generator using an adversarial training. On the other hand,
the group level-discriminator, DG , aims to learn holistic statistical
information by distinguishing if the mean feature is from the clas-
sifier or the pseudo-label generator. Specifically, through these two
discriminators, we try to discover both localized knowledge at the
instance level and the global feature distribution knowledge while
aligning features across both source and target domains.

Let the feature representation at kth layer be defined as Mk (x)
and Gk (x) for the classifier and the pseudo-label generator respec-
tively. In our experiments, we choose the features from the last
fully connected layer (denoted by L) as it has shown to be effective
in many transfer learning tasks. We learn the parameters of G, DI ,
DG and M using adversarial training, as described in Algorithm 1.
The learned classifier is finally used in evaluation on the target task.
Moreover, we adopt the same network architecture for both, the
classifier and the pseudo-label generator, in order to ensure that
the feature representations of both labeled and unlabeled samples
are in the same space for feature alignment. Notice that our pseudo-
label generator mimics the generator in Generative Adversarial
Networks (GANs) [13] which generates an image from a random
vector. However, unlike generators in GANs, the input to our gen-
erator is an image rather than a latent noise vector and it produces
pseudo-labels for the given inputs.

3.3 Optimization
For transferring knowledge from unlabeled data, we propose to
adapt the two-player min-max game based on the discriminators
and the pseudo-label generator. Towards this, we need to learn the
parameters of generator G, and the discriminators in a way that G
is able to generate features such that both DI and DG are not able to
discriminate between instance-level and group-level features from
target or source distribution respectively. We consider classifier
features as positive and pseudo-label generator features as negative
and then train the discriminators using binary cross-entropy loss.
On the other hand, the generator is trained to produce features
such that the discriminators are fooled. Thus, similar to the GANs,
the pseudo-label generator G and the discriminators, DI and DG ,
play the following two-player min-max game:

min
G

max
DI ,DG

EpM (xt )

[
log DI

(
ML(xt )

)
+ log DG

(
ML(xt )

)]
+ (1)

EpG (xs )

[
log

(
1 − DI

(
GL(xs )

))
+ log

(
1 − DG

(
GL(xs )

))]
where,pM (xt ) andpG(xs ) correspond to the feature distribution ofM
in target domain and G in source domain. We solve the optimization
problem in eqn. 1 alternately using gradient descent where we once
fix the parameters of the generator G and train the discriminators
DI and DG and vice versa as described below.

Algorithm 1 Adversarial Knowledge Transfer Training

Input: Xt = {(xt i ,yit )}ni=1, Xs = {xs j }mj=1
Output: Classifier Model M
for number of training iterations do

Sample b tuples of (xt ,y) from Xt
Sample b samples of xs from Xs
Step a. Minimize LD using Eqn. 4 and update DI , DG
Step b. Maximize LG using Eqn. 5 and update G
Step c. Minimize LM using Eqn. 6 and update M

end for

Discriminator Training. Given two discriminators for instance-
level and group-level feature alignment across the classifier M and
the pseudo-label generator G, during training, we first update the
weights of the discriminators DI and DG with features coming
from M as positive and that coming from G as negative. For a batch
of size b, instance-level discriminator loss (LDI ) and group-level
discriminator loss (LDG ) on mean features are defined as follows.

LDI =
1
b

b∑
i=1

log DI
(
ML(x it )

)
+

1
b

b∑
i=1

log
(
1 − DI

(
GL(x is )

) )
(2)

LDG = log DG

( 1
b

b∑
i=1

ML(x it )
)
+ log

(
1−DG

( 1
b

b∑
i=1

GL(x is )
))

(3)

Finally, the total loss for discriminators LD is given as

LD = λDILDI + λDGLDG (4)

where, λDI and λDG are the weights for the instance and group
discriminator losses respectively.

Pseudo-Label Generator Training. The objective of training G
is to fool the discriminators such that the discriminator fails to
distinguish whether the feature is coming from the classifier or
pseudo-label generator. The loss function to train the G can be
written as follows.

LG =
1
b

b∑
i=1

log
(
1−DI

(
GL(x is )

))
+log

(
1−DG

( 1
b

b∑
i=1

GL(x is )
))

(5)

Classifier Training. The classifier is updated at the end of each
iteration using both labeled and unlabeled data. We can update
M easily for the labeled data but since there are no labels for the
unlabeled source data, we use prediction from the generator as true
labels to compute the loss. The loss function to update the classifier
for an iteration with batch size b can be represented as follows:

LM =
1
b

b∑
i=0

L
(
M(x it ),yit

)
+ λs L

(
M(x is ),G(x is )

)
(6)

where L(p,q) is the categorical cross-entropy loss multi-class and
binary cross-entropy loss for multi-label classification, p as the true
label and q as the predicted label. The loss originating from the
source samples is used as a regularizing term with parameter λs so
that it assists the learning of target task and not suppressing it.
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4 EXPERIMENTS
We perform rigorous experiments on different visual recognition
tasks, such as Object Recognition (single-label and multi-label),
Character Recognition (Font and Handwritten), and Sentiment
Recognition to verify the effectiveness of our approach. Our pri-
mary objective is to transfer knowledge from unlabeled data to the
classifier network such that the test accuracy on the target data
significantly improves over the training from scratch (i.e., training
with only target data without any knowledge transfer) and ap-
proaches as close to that of supervised knowledge transfer methods
that uses the labeled source data. Note that we do not require the
source and target domains to have the same distribution or label
space across all our experiments.

4.1 Implementation Details
All our implementations are based on PyTorch [37]. We choose
VGG-16 [44] as the network architecture for both classifier and
generator in all our experiments except CIFAR-10 and Pasca-VOC
experiments. For CIFAR-10 experiment, to maintain the same net-
work architecture as with other methods, we modify the last three
fully connected layers to (512-512-10) from (4096-4096-10). In Pascal-
VOC experiment we use AlexNet to compare with other state-of-
the-art methods [20, 20, 33, 38, 39, 52, 53]. We choose the same
network architecture for both classifier and pseudo-label generator
as the features generated by these networks should lie in the same
space and thus it helps in the feature alignment. We use three fully-
connected (FC) layers (512-256-128) as the discriminator network
for CIFAR-10 experiment and (4096-1024 -512) for all other experi-
ments. We use SGD with learning rate 0.01, 0.01 and 0.001 for the
classifier, pseudo-label generator and discriminator, respectively.
We use momentum of 0.9 and weight decay of 0.0005 while training
the classifier. The learning rate of the classifier and generator is
reduced by a factor of 0.1 after 75 epochs. All the loss weights are set
to 1 and kept fixed for all experiments. We train our models with a
batch size of 96 for all experiments except for PASCAL-VOC where
we use batch of 20. In each iteration, the generator is updated once
using unlabeled source dataset and the discriminator is updated
twice using labeled target and unlabeled source dataset.

4.2 Compared Methods
We compare with several methods that fall into twomain categories.
(1) Supervised knowledge transfer methods that use labeled source
data, such as Finetuning and Joint Training (i.e., multi-task learning).
(2) Unsupervised knowledge transfer methods (a.k.a self-supervised
methods) that leverage unlabeled source data, such as Random
Network [51], Pseudo Labels [26], Jigsaw [33], Colorization [52]
and Split-Brain Autoencoder [53]. We additionally compare with
the training from scratch baseline to show the effectiveness of our
knowledge transfer approach for improving recognition accuracy
on the target task. Below are the brief descriptions on the baselines.

Finetuning and Joint Training. In Finetuning, we first train a
classifier using source data by assuming that the true labels are
available during training and then perform an end-to-end finetun-
ing on the target dataset. The Joint Learning baseline learns a shared
representation using a single network on both source and target

datasets. Since both of these methods use labeled source data, we
call them as supervised knowledge transfer methods.

Random Network. Following [34, 51], we perform an experiment
to obtain random pseudo labels for source data by clustering the
features extracted from a randomly initialized network. We then
train the classifier network using these pseudo-labels for source
data and finetune it on the labeled target dataset.

Pseudo Labels.We first train a classifier on the labeled target data
and obtain the pseudo labels for source data by making predictions
using the classifier. We then update the network using both labeled
target and pseudo-labeled source images to obtain an improved
model for recognition on target task.

Jigsaw [33].We use solving jigsaw puzzles as pretext task on unla-
beled source dataset and then finetune on target task. We use same
network (VGG-16) to make a fair comparison with our approach.

Colorization [52]. Following [52], we use colorization (mapping
from grayscale to color version of a photograph) as a form of self-
supervised feature learning on unlabeled source data and then
finetune on labeled target data.

Split-Brain Autoencoder [53]. Split-Brain Autoencoder uses the
cross-channel prediction to learn features on unlabeled data where
one sub-network solves the problem of colorization (predicting a
and b channels from the L channel in Lab colorspace), and the other
perform the opposite (synthesizing L from a, b channels).

As character recognition task involves grayscale images, we
perform colorization and split-brain autoencoder experiments on
only object recognition and sentiment recognition tasks. We use
publicly available code of both methods and set the parameters as
recommended in the published works.

4.3 Object Recognition
The goal of this experiment is to verify the effectiveness of our
proposed adversarial approach in both single and multi-label object
recognition while leveraging unlabeled data (from different classes
as the target task) which are abundantly available from the web.

4.3.1 Single-label Object Recognition. We conduct this experi-
ment using CIFAR-10 [21] as the labeled target dataset and CIFAR-
100 [21] as the unlabeled source dataset. Both datasets contain
50,000 training images and 10,000 test images of size 32 × 32. We
use the same train/test split from the original CIFAR-10 dataset for
our experiments. Note that the classes in CIFAR-10 and CIFAR-100
are mutually exclusive. Table 1 shows results of different methods
on CIFAR-10 dataset. From Table 1, the following observations can
be made: (1) The classifier trained using our approach outperforms
all the unsupervised knowledge transfer (self-supervised) methods.
Among the alternatives, Split-Brain baseline is the most competitive.
However, our approach still outperforms it by a margin of 0.61%
due to the introduced feature alignment using adversarial learning.
(2) As expected Joint Training outperforms both Off-the-Shelf and
Finetuning baseline as it learns a shared representation from both
dataset by transferring knowledge across them.

4.3.2 Multi-label Object Recognition. We conduct this experi-
ment on the more challenging multi-label PASCAL-VOC [9] as the
labeled target and ImageNet [8] as the unlabeled source dataset.
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Table 1: Experimental Results on Single-label Object Recog-
nition task. The proposed approach, AKT outperforms all
the unsupervised knowledge transfer methods.

Target: CIFAR-10 and Source: CIFAR-100

Methods Target Accuracy (%)
Scratch 92.49
Finetuning 93.27
Joint Training 93.32
Pseudo Labels [2] 92.85
Random Network [39] 92.37
Jigsaw [33] 75.85
Colorization [52] 92.57
Split-Brain [53] 92.60
AKT (Ours: only DI ) 93.04
AKT (Ours: with DI and DG ) 93.21

Table 2: Comparison of our method with state-of-the-art
self-supervised alternatives on PASCAL-VOC Multi-label
Object Classification task. The reported results of all the
self-supervised methods except the Rotation, Rotation De-
coupling, and Pseudo Labels are from [34]

.

Target: PASCAL-VOC and Source: ImageNet

Methods Target mAP (%)
Scratch 63.5
Finetuning 87.0
Joint Training 86.7
Pseudo Labels [2] 63.2
Random Network [39] 53.3
Jigsaw [33] 67.7
Jigsaw++ [34] 69.9
Colorization [52] 65.9
Split-Brain [53] 67.1
Rotation [12] 73.0
Rotation Decoupling [10] 74.5
AKT (Ours: only DI ) 76.9
AKT (Ours: with DI and DG ) 77.4

We follow the standard train/test split [9] to perform our exper-
iments. Table 2 shows the results. We have the following obser-
vations from Table 2. (1) Our proposed method outperforms all
other self-supervised methods including the Rotation Decoupling
method in [10] by a significant margin (2.9% improvement in mAP).
Note that we train the source and target data jointly and since
ImageNet is a large scale dataset of 1.1M images and PASCAL-VOC
has only 4982 images, our method utilizes a small fraction of data
from the ImageNet to achieve this state-of-the-art performance
on the PASCAL-VOC dataset. (2) The performance gap between
our method and supervised knowledge transfer methods begins to
increase. This is expected as with a challenging multi-label object
classification dataset, an unsupervised approach can not compete
with a fully supervised knowledge transfer approach, especially,
when the latter one is using true labels from a large scale source

Table 3: Results on Font Character Recognition task. Our ap-
proach outperforms all the self-supervised baselines and is
very competitive against the supervised topline (∼0.04%).

Target: Char74K and Source: EMNIST

Methods Target Accuracy (%)

Scratch 8.55
Finetuning 19.85
Joint Training 18.60
Pseudo Labels [2] 8.54
Random Network [39] 9.04
Jigsaw [33] 18.37
AKT (Ours: only DI ) 19.81
AKT (Ours: with DI and DG ) 19.79

Table 4: Experimental Results on Handwritten Character
Recognition. Note that the performance of Random Net-
work is very competitive for this task.

Target: EMNIST and Source: MNIST

Methods Target Accuracy (%)
Scratch 92.24
Finetuning 93.85
Joint Training 93.80
Pseudo Labels [2] 89.16
Random Network [39] 92.35
Jigsaw [33] 50.90
AKT (Ours: only DI ) 93.59
AKT (Ours: with DI and DG ) 93.65

dataset like ImageNet. However, we would like to point out once
more that, in practice, supervised knowledge transfer methods have
serious issues with scalability as they require a tremendous amount
of manual annotations. On the other hand, our approach can be
trained on internet-scale datasets with no supervision. (3) The per-
formance gap with RandomNetwork baseline is much higher (53.3%
vs 77.4%), justifying the relevance of our pseudo-label prediction
using aligned features while transferring knowledge from a large
unlabeled dataset. (4) Our proposed approach works the best while
both instance-level and group-level discriminators are used for
feature alignment (76.9% vs 77.4%).

4.4 Character Recognition
The goal of this experiment is to compare our approach with other
alternatives on recognizing both font and handwritten characters.

4.4.1 Font Character Recognition. We use Char74K [7], a font
character recognition dataset as the labeled target set and handwrit-
ten character split from EMNIST dataset [5] as the source dataset
to perform this experiment. Char74K dataset consists of 74,000 im-
ages from 64 classes that includes English alphabets (a-z,A-Z) and
numeric (0-9). EMNIST dataset consists of 145,600 images for 26
classes (a-z). For the Char74K dataset, we divide the data into 80/20
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Table 5: Results on Advertisement Dataset. Our proposed ap-
proach performs the best among the self-supervised alterna-
tives and is very competitive against supervised baselines.

Target: Advertisement and Source: BAM

Method Target Accuracy (%)

Scratch 25.02
Finetuning 29.00
Joint Training 29.51
Pseudo Labels [2] 25.02
Random Network [39] 25.51
Jigsaw [33] 28.38
Colorization [52] 16.12
Split-Brain [53] 27.71
AKT (Ours: only DI ) 28.70
AKT (Ours: with DI and DG ) 28.87

train/test split and use the standard train/test split for EMNIST.
From Table 3, we have the following observations. (1) Similar to
the object recognition results, our proposed approach outperforms
both Random Network and Pseudo Labels baseline by a significant
margin (11% improvement over Random Network). Among the al-
ternatives, Jigsaw baseline is the most competitive. However, we
still outperform the Jigsaw baseline by a margin of about 1.5% in
recognizing font characters. (2) Our approach is very competitive
to the supervised knowledge transfer baselines (19.81% vs 19.85%)
but significantly outperforms the training from scratch baseline
by 11%, thanks to the effective knowledge transfer from unlabeled
source data to the target dataset.
4.4.2 Handwritten Character Recognition. We conduct this experi-
ment using EMNIST as the labeled target dataset and MNIST [25]
as the unlabeled source dataset. While EMNIST contains handwrit-
ten characters, MNIST is a standard dataset for handwritten digits
containing 80,000 images. We use the original train/test split from
both datasets in our experiments. Table 4 shows that our proposed
method achieves performance very close to the supervised methods
which indicates that our method can achieve comparable perfor-
mance without requiring a single label from the source dataset.
Note that the performance of Jigsaw baseline is only 50.90% which
is much lower than that of training from scratch. We believe this is
because the Jigsaw is optimized to work for 256×256 size images in
training [33] and hence fails to learn efficient features with 28 × 28
small size images on this task.

4.5 Sentiment Recognition
Recently, sentiment analysis has garnered much interest in com-
puter vision as there is more to images than their objective physical
content: for example, advertisements are created to persuade a
viewer to take a certain action. However, collecting manual labels
for advertisement images are very difficult and costly compared
to generic object labels. The goal of this experiment is to lever-
age unlabeled images for improving performance of a sentiment
recognition classifier on advertisement images. We conduct this ex-
periment using the Advertisement dataset [18] as the labeled target
and Behance-Artistic-Media (BAM) [48] dataset as the unlabeled

source dataset. While the Advertisement dataset contains 64,382
images across 30 sentiment categories, the BAM dataset consists of
2.5 million images across 4 sentiment categories.

Following are the observations from Table 5: (1) Our method
consistently outperforms the other baselines to achieve the top
accuracy of 28.87% on the Advertisement dataset. Jigsaw baseline
is the most competitive with an accuracy of 28.38%. We observe
that Jigsaw baseline is able to transfer the knowledge well only if
the pretext task is trained on a very large-scale dataset containing
millions of images. (2) Since our algorithm processes same amount
of the source and the target data, it uses much lower number of
unlabeled samples from the source dataset. However, by utilizing
some fraction of unlabeled samples, our approach is only about
0.13% behind Finetuning baseline that uses all the unlabeled source
samples along with their labels for training the source classifier.

5 ABLATION ANALYSIS
Weperform the following ablation experiments to better understand
the contributions of various components of our proposed approach.

5.1 Advantage of Feature Alignment
To better understand the contribution of feature alignment across
target features from the classifier and source features from the
pseudo-label generator, we perform an experiment where we jointly
train the classifier with labeled target data and pseudo-labeled
source data without any feature alignment. We observe that our
approach without feature alignment produces inferior results, with
target accuracy of 92.75% on CIFAR-10/CIFAR-100 and 67.10% on
PASCAL-VOC/ImageNet experiments respectively. These perfor-
mances are about 0.5% and 10% lower compared to our approach
using feature alignment for CIFAR-10/CIFAR-100 and PASCAL-
VOC/ImageNet experiments respectively. Thus, we conjecture that
feature alignment is an essential step for predicting reliable pseudo-
labels while transferring knowledge from the unlabeled data.

5.2 Different Layer for Alignment
We examine the performance of our approach by using adversarial
loss across fc6 instead of fc7 features along with conv5 features and
found that feature alignment across fc6 produces inferior results
(92.85% vs 93.21%) on CIFAR-10/CIFAR-100 experiment. This sug-
gests that fc7 features along with conv5 features are better suited
for transfer learning as shown in many prior works.

5.3 Impact of Network Architecture
In the supervised setting, deeper architectures have shown higher
performance on many tasks. To study the impact of choice of archi-
tecture we perform experiments on object recognition tasks using
VGG16 and ResNet50 architectures. As expected, we observe that a
deeper architectures VGG16 and ResNet50 leads to significant im-
provement as compared to AlexNet. From Table 6a we observe that
on the CIFAR-10/CIFAR-100 task our proposed approach achieves
93.21% with VGG16 and 94.65% using ResNet50 as compared to
89.04% on AlexNet. Similar performance trend is observed on multi-
label recognition (Table 6b), where we achieve improvement of 0.8%
mAP and 2.2% mAP using VGG16 and ResNet50, respectively.
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Table 6: Performance of proposed method with different architecture on Object Recognition tasks.

Target: CIFAR-10 and Source: CIFAR-100

Architecture Target Accuracy (%)
AlexNet [22] 89.04
VGG16 [44] 93.21
ResNet50 [16] 94.65

(a) Single-Label Object Recognition

Target: PASCAL-VOC and Source: ImageNet

Architecture Target mAP (%)
AlexNet [22] 77.4
VGG16 [44] 78.2
ResNet50 [16] 79.6

(b) Multi-Label Object Recognition

(a) Samples from class aeroplane from PASCAL-VOC experiment. (b) Samples from class bike from PASCAL-VOC experiment.

Figure 3: Predicted pseudo-labels on ImageNet data. Top-row (blue) are the samples from the target PASCAL-VOC dataset.
Middle-row (green) shows the samples from ImageNet dataset where pseudo labels correspond to correct labels. Bottom-row
(red) shows the source samples where object in image does not match the correct label but has visual similarity to the target
class. From the Middle-rows, we observe that our pseudo-label generator predicts the correct label of many unlabeled samples
such as aeroplanes in (a) and bike in (b). Our approach classifies bird images (which resembles aeroplane) and fins of dolphins
(which resembles wings of a aircraft) as aeroplanes as seen in bottom row of (a). Similarly, since target data in (b) have bike
wheel as prominent feature, source samples with circular features are pseudo-labeled as bike. Best viewed in color.

5.4 Reliability of Pseudo Labels
From Figure 3a- 3b, we observe that the pseudo-label generator G
is able to generate correct labels for many samples in the source
dataset (middle row) and generates reasonable labels for visually
similar classes (bottom row). We further compute reliability score
by comparing the correct label and pseudo-labels of about 700
randomly sampled unlabeled images from ImageNet dataset and
find that the reliability score is more than 85% for both of the classes
as shown in Table 7.

5.5 MSE Loss vs Adversarial Loss
We investigate the importance of adversarial loss by comparing
with L2 loss for aligning the features on the CIFAR-10/CIFAR-100
task, and found that the later produces inferior results with a target
accuracy of 92.66% compared to 93.21% by the adversarial loss.

5.6 Out-of-Distribution Source Data
Following [15], we perform an experiment using mini-ImageNet
as the unlabeled source dataset and EuroSAT containing remote
sensing images with no perspective distortion, as the labeled target
dataset. Our proposed approach outperforms the Pseudo-Labels
baseline by a margin of 0.72% (95.22% vs 94.5%) and is competitive

with the supervised Fine-tuning baseline (95.22% vs 96.19%) using
AlexNet as the network architecture.

Table 7: Top-3 pseudo label predictions on ImageNet classes.

ImageNet Class Top-3 Pseudo Label Score

Fig. 3a. warplane aeroplane, bird, car 86.67%
Fig. 3b. bike bicycle, motorbike, person 88.46%

6 CONCLUSION
We present an Adversarial Knowledge Transfer (AKT) approach
for transferring knowledge from unlabeled data to the labeled data
without requiring the unlabeled data to be from the same label space
or data distribution as of the labeled data. The proposed adversarial
learning jointly trains the classifier using both labeled target data
and source data whose labels are predicted using a pseudo-label
generator by aligning the feature space of unlabeled data with
the labeled target data. Experiments show that our approach not
only outperforms the unsupervised knowledge transfer alternatives
but is also very competitive while comparing against supervised
knowledge transfer methods.
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