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Abstract

Selective classification is a powerful tool for
decision-making in scenarios where mistakes are
costly but abstentions are allowed. In general, by
allowing a classifier to abstain, one can improve
the performance of a model at the cost of reducing
coverage and classifying fewer samples. However,
recent work has shown, in some cases, that selec-
tive classification can magnify disparities between
groups, and has illustrated this phenomenon on
multiple real-world datasets. We prove that the
sufficiency criterion can be used to mitigate these
disparities by ensuring that selective classification
increases performance on all groups, and intro-
duce a method for mitigating the disparity in preci-
sion across the entire coverage scale based on this
criterion. We then provide an upper bound on the
conditional mutual information between the class
label and sensitive attribute, conditioned on the
learned features, which can be used as a regular-
izer to achieve fairer selective classification. The
effectiveness of the method is demonstrated on the
Adult, CelebA, Civil Comments, and CheXpert
datasets.

1. Introduction
As machine learning applications continue to grow in scope
and diversity, its use in industry raises increasingly many
ethical and legal concerns, especially those of fairness and
bias in predictions made by automated systems (Selbst et al.,
2019; Bellamy et al., 2018; Meade, 2019). As systems are
trusted to aid or make decisions regarding loan applications,
criminal sentencing, and even health care, it is more impor-
tant than ever that these predictions be free of bias.
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The field of fair machine learning is rich with both problems
and proposed solutions, aiming to provide unbiased decision
systems for various applications. A number of different
definitions and criteria for fairness have been proposed, as
well as a variety of settings where fairness might be applied.

One major topic of interest in fair machine learning is that
of fair classification, whereby we seek to make a classifier
“fair” for some definition of fairness that varies according
to the application. In general, fair classification problems
arise when we have protected groups that are defined by a
shared sensitive attribute (e.g., race, gender), and we wish
to ensure that we are not biased against any one group with
the same sensitive attribute.

In particular, one sub-setting of fair classification which
exhibits an interesting fairness-related phenomenon is that
of selective classification. Generally speaking, selective
classification is a variant of the classification problem where
a model is allowed to abstain from making a decision. This
has applications in settings where making a mistake can be
very costly, but abstentions are not (e.g., if the abstention
results in deferring classification to a human actor).

In general, selective classification systems work by assign-
ing some measure of confidence about their predictions,
and then deciding whether or not to abstain based on this
confidence, usually via thresholding.

The desired outcome is obvious: the higher the confidence
threshold for making a decision (i.e., the more confident
one needs to be to not abstain), the lower the coverage
(proportion of samples for which a decision is made) will
be. But in return, one should see better performance on the
remaining samples, as the system is only making decisions
when it is very sure of the outcome. In practice, for most
datasets, with the correct choice of confidence measure and
the correct training algorithm, this outcome is observed.

However, recent work has revealed that selective classifica-
tion can magnify disparities between groups as the coverage
decreases, even as overall performance increases. (Jones
et al., 2020). This, of course, has some very serious con-
sequences for systems that require fairness, especially if it
appears at first that predictions are fair enough under full
coverage (i.e., when all samples are being classified).
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Thus, we seek a method for enforcing fairness which ensures
that a classifier is fair even if it abstains from classifying on
a large number of samples. In particular, having a measure
of confidence that is reflective of accuracy for each group
can ensure that thresholding doesn’t harm one group more
than another. This property can be achieved by applying
a condition known as sufficiency, which ensures that our
predictive scores in each group are such that they provide
the same accuracy at each confidence level (Barocas et al.,
2019). This condition also ensures that the precision on
all groups increases when we apply selective classification,
and can help mitigate the disparity between groups as we
decrease coverage.

The sufficiency criteria can be formulated as enforcing a
conditional independence between the label and sensitive
attribute, conditioned on the learned features, and thus al-
lows for a relaxation and optimization method that centers
around the mutual information. However, to impose this
criteria, we require the use of a penalty term that includes
the conditional mutual information between two discrete
or continuous variables conditioned on a third continuous
variable. Existing method for computing the mutual infor-
mation for the purposes of backpropagation tend to struggle
when the term in the condition involves the learned features.
In order to facilitate this optimization, we thus derive an
upper-bound approximation of this quantity.

In this paper, we make two main contributions. Firstly, we
prove that sufficiency can be used to train fairer selective
classifiers which ensure that precision always increases as
coverage is decreased for all groups. Secondly, we derive
a novel upper bound of the conditional mutual information
which can be used as a regularizer to enforce the sufficiency
criteria, then show that it works to mitigate the disparities
on real-world datasets.

2. Background
2.1. The Fair Classification Problem

We begin with the standard supervised learning setup of
predicting the value of a target variable Y ∈ Y using a set
of decision or predictive variables X ∈ X with training
samples {(x1, y1), . . . , (xn, yn)}. For example, X may be
information about an individual’s credit history, and Y is
whether the individual will pay back a certain loan. In
general, we wish to find features Φ(x) ∈ RdΦ , which are
predictive about Y , so that we can construct a good predictor
ŷ = T (Φ(x)) of y under some loss criteria L(ŷ, y), where
T denotes the final classifier on the learned features.

Now suppose we have some sensitive attributes D ∈ D we
wish to be “fair” about (e.g., race, gender), and training sam-
ples {(x1, y1, d1), . . . , (xn, yn, dn)}. For example, in the
banking system, predictions about the chance of someone

repaying a loan (Y ) given factors about one’s financial situa-
tion (X) should not be determined by gender (D). While D
can be continuous or discrete (and our method generalizes
to both cases), we focus in this paper on the case where
D is discrete, and refer to members which share the same
value of D as being in the same group. This allows us to
formulate metrics based on group-specific performance.

There are numerous metrics and criteria for what constitutes
a fair classifier, many of which are mutually exclusive with
one another outside of trivial cases. One important criteria
is positive predictive parity (Corbett-Davies et al., 2017;
Pessach & Shmueli, 2020), which is satisfied when the pre-
cision (which we denote as PPV , after Positive Predictive
Value) for each group is the same, that is:

∀a, b∈D,P(Y =1|Ŷ =1, D=a)=P(Y =1|Ŷ =1, D=b).
(1)

This criteria is especially important in applications where
false positives are particularly harmful (e.g., criminal sen-
tencing or loan application decisions) and having one group
falsely labeled as being in the positive group could lead to
great harm or contribute to further biases. Looking at preci-
sion rates can also reveal disparities that may be hidden by
only considering the differences in accuracies across groups
(Angwin et al., 2016).

When D is binary, an intuitive way to measure the severity
of violations of this condition is to measure the difference
in precision between the two groups:

∆PPV , P(Y =1|Ŷ =1, D=0)−P(Y =1|Ŷ =1, D=1).
(2)

A number of methods exist for learning fairer classifiers.
(Calders et al., 2009) and (Menon & Williamson, 2018)
reweight probabilities to ensure fairness, while (Zafar et al.,
2017) proposes using covariance-based constraints to en-
force fairness criteria, and (Zhang et al., 2018) uses an
adversarial method, requiring the training of an adversarial
classifier. Still others work by directly penalizing some spe-
cific fairness measure (Zemel et al., 2013b; du Pin Calmon
et al., 2017).

Many of these methods also work by penalizing some ap-
proximation or proxy for the mutual information. (Mary
et al., 2019; Baharlouei et al., 2020; Lee et al., 2020) propose
the use of the Hirschfeld-Gebelein-Renyi maximal corre-
lation as a regularizer for the independence and separation
constraints (which requires that Ŷ ⊥ D and Ŷ ⊥ D | Y ,
respectively), which has been shown to be an approximation
for the mutual information (Huang et al., 2019). Finally,
(Cho et al., 2020) approximates the mutual information us-
ing a variational approximation. However, none of these
methods are designed to tackle the selective classification
problem.



Fair Selective Classification Via Sufficiency

2.2. Selective Classification

In selective classification, a predictive system is given the
choice of either making a prediction Ŷ or abstaining from
the decision. The core assumption underlying selective clas-
sification is that there are samples for which a system is
more confident about its prediction, and by only making
predictions when it is confident, the performance will be
improved. To enable this, we must have a confidence score
κ(x) which represents the model’s certainty about its pre-
diction on a given sample x (Geifman & El-Yaniv, 2017).
Then, we threshold on this value to decide whether to make
a decision or to abstain. We define the coverage as the frac-
tion of samples for which we do not abstain on (i.e., the
fraction of samples that we make predictions on).

As is to be expected, when the confidence is a good measure
of the probability of making a correct prediction, then as
we increase the minimum confidence threshold for making
the prediction (thus decreasing the coverage), we should see
the risk on the classified samples decrease or the accuracy
over the classified samples increase. This leads us to the
accuracy-coverage tradeoff, which is central to selective
classification (though we note here the warning from the
previous section about accuracy not telling the whole story).

Selective classifiers can work a posteriori by taking in an
existing classifier and deriving an uncertainty measure from
it for which to threshold on (Geifman & El-Yaniv, 2017),
or a selective classifier can be trained with an objective that
is designed to enable selective classification (Cortes et al.,
2016; Yildirim et al., 2019).

One common method of extracting a confidence score from
an existing network is to take the softmax response s(x) as
a measure of confidence. In the case of binary classification,
to better visualize the distribution of the scores, we define
the confidence using a monotonic mapping of s(x):

κ =
1

2
log

(
s(x)

1− s(x)

)
(3)

which maps [0.5, 1] to [0,∞] and provides much higher
resolution on the values close to 1.

Finally, to measure the effectiveness of selective classifi-
cation, we can plot the accuracy-coverage curve, and then
compute the area under this curve to encapsulate the perfor-
mance across different coverages (Franc & Průša, 2019).

2.3. Biases in Selective Classification

(Jones et al., 2020) has shown that in some cases, when cov-
erage is decreased, the difference in recall between groups
can sometimes increase, magnifying disparities between
groups and increasing unfairness. In particular, they have
shown that in the case of the CelebA and CivilComments
dataset, decreasing the coverage can also decrease the recall

Figure 1. (Top) When margin distributions are not aligned, (Bot-
tom) then as we sweep over the threshold τ , the accuracies for the
groups do not necessarily move in concert with one another.

on the worst-case group.

In general, this phenomenon occurs due to a difference be-
tween the average margin distribution and the group-specific
margin distributions, resulting in different levels of perfor-
mance when thresholding, as illustrated in Figure 1.

The margin M of a classifier is defined as κ(x) when
ŷ(x) = y and−κ(x) otherwise. If we let τ be our threshold,
then a selective classifier makes the correct prediction when
M(x) ≥ τ and incorrect predictions when M(x) ≤ −τ .
We also denote its probability density function (PDF) and
cumulative density function (CDF) as fM and FM , respec-
tively. Then, the selective accuracy is

AF (τ) =
1− FM (τ)

FM (−τ) + 1− FM (τ)
(4)

for a given threshold. We can analogously compute the
selective precision by conditioning on Ŷ = 1,

PPVF (τ) =
1− FM |Ŷ=1(τ)

FM |Ŷ=1(−τ) + 1− FM |Ŷ=1(τ)
. (5)

We can also analogously define the distributions of the mar-
gin for each group using fM,D and FM,d for group d ∈ D.

(Jones et al., 2020) proposes a number of different situa-
tions for which average accuracy could increase but worst-
group accuracy could decrease based on their relative mar-
gin distributions. For example, if F is left-log-concave
(e.g., Gaussian), then AF (τ) is monotonically increasing
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when AF (0) ≥ 0.5 and monotonically decreasing other-
wise. Thus, ifAF (0) > 0.5 butAFd(0) < 0.5, then average
accuracy may increase as we increase τ (and thus decrease
coverage) but the accuracy on group d may decrease, thus
resulting in magnified disparity. This same phenomenon
occurs with the precision when we condition on Ŷ = 1. In
general, when margin distributions are not aligned between
groups, disparity can increase as one sweeps over the thresh-
old τ . Further subdividing groups according to their label
yields the difference in recall rates observed.

3. Fair Selective Classification with
Sufficiency

3.1. Sufficiency and Fair Selective Classification

Our solution to the fair selective classification problem is to
apply the sufficiency criteria to the learned features.

Sufficiency requires that Y ⊥ D | Ŷ or Y ⊥ D | Φ(X), i.e.,
the prediction completely subsumes all information about
the sensitive attribute that is relevant to the label (Cleary,
1966). When Y is binary, the sufficiency criteria requires
that (Barocas et al., 2019):

P(Y = 1|Φ(x), D = a) = P(Y = 1|Φ(x), D = b),

∀a, b ∈ D. (6)

Sufficiency has applications to full-coverage positive pre-
dictive parity, and is also used for solving the domain gener-
alization problem by learning domain-invariant features, as
in Invariant Risk Minimization (IRM) (Creager et al., 2020;
Arjovsky et al., 2019).

The application of this criteria to fair selective classification
comes to us by way of Calibration by Group. Calibration
by group (Chouldechova, 2017) requires that there exists a
score function R = s(x) such that, for all r ∈ (0, 1):

P(Y = 1|R = r,D = a) = r, ∀a ∈ D. (7)

The following result from (Barocas et al., 2019) links cali-
bration and sufficiency:
Theorem 1. If a classifier has sufficient features Φ, then
there exists a mapping h(T (Φ)) : [0, 1] → [0, 1] such that
h(T (Φ)) is calibrated by group.

If we can find sufficient features Φ(X), so that the score
function is calibrated by group based these features, then
we have the following result (the proof can be found in the
Appendix A):
Theorem 2. If a classifier has a score function R = s(x)
which is calibrated by group, and selective classification is
performed using confidence κ as defined in (3), then for all
groups d ∈ D we have that both AF (τ) and PPVFd(τ) are
monotonically increasing with respect to τ . Furthermore,
we also have that AFd(0) > 0.5 and PPVFd(0) > 0.5.

From this, we can guarantee that as we sweep through the
threshold, we will never penalize performance of any one
group in service of increasing the overall precision. Fur-
thermore, in most real-world applications, the precision on
the best-performing groups tends to saturate very quickly
to values close to 1 when coverage is reduced, and thus, if
we can guarantee that the precision increases on the worst
performing group as well, then in general, the difference in
precision between groups decreases as coverage decreases.

3.2. Imposing the Sufficiency Condition

From the above theorem, we can see that the classifier given
by the following optimization problem which satisfies suf-
ficiency should yield the desired property of enabling fair
selective classification. It should ensure that as we sweep
over the coverage, the performance of one group is not
penalized in the service of improving the performance of
another group or improving the average performance.

min
θ

L(ŷ, y)

s.t. Y ⊥ D|Φ(X),
(8)

where ŷ = T (Φ(x)), and θ are the model parameters for
both Φ and T . One possible way of representing the suffi-
ciency constraint is by using the mutual information:

min
θ

L(ŷ, y)

s.t. I(Y ;D|Φ(X)) = 0.
(9)

This follows from the fact that Y ⊥ D | Φ(X) is satisfied
if and only if I(Y ;D|Φ(X)) = 0. This provides us with a
simple relaxation of the constraint into the following form:

min
θ
L(ŷ, y) + λI(Y ;D|Φ(X)). (10)

We note here that existing works using mutual information
for fairness are ill-equipped to handle this condition, as they
assume that it is not the features that will be conditioned
on, but rather that the penalty will be the mutual informa-
tion between the sensitive attribute and the features (e.g.,
penalizing I(Φ(X);D) for demographic parity), possibly
conditioned on the label (e.g., penalizing I(Φ(X);D|Y )
in the case of equalized odds). As such, existing methods
either assume that the variable being conditioned on is dis-
crete (du Pin Calmon et al., 2017; Zemel et al., 2013a; Hardt
et al., 2016), become unstable when the features are placed
in the condition (Mary et al., 2019), or simply do not allow
for conditioning of this type due to their formulation (Grari
et al., 2019; Baharlouei et al., 2020).

Thus, in order to approximate the mutual information for
our purposes, we must first derive an upper bound for the
mutual information which is computable in our applications.
Our bound is inspired by the work of (Cheng et al., 2020)
and is stated in the following theorem:
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Theorem 3. For random variables X , Y and Z, we have

IUB(X;Y |Z) ≥ I(X;Y |Z), (11)

where equality is achieved if and only if X ⊥ Y | Z, and

IUB(X;Y |Z) , EPXYZ [logP (Y |X,Z)]

− EPX [EPY Z [logP (Y |X,Z)]] .
(12)

Proof. The conditional mutual information can be written
as

I(X;Y |Z)

= EPXYZ [logP (Y |X,Z)]− EPY Z [logP (Y |Z)] . (13)

Thus,

IUB(X;Y |Z)− I(X;Y |Z)

= EPY Z [logP (Y |Z) + EPX [− logP (Y |X,Z)]] . (14)

Note that − log(·) is convex,

EPX [− logP (Y |X,Z)] ≥ − logEPX [P (Y |X,Z)]

= − logP (Y |Z), (15)

which completes the proof.

Thus, I(Y ;D|Φ(X)) can be upper bounded by IUB as:

I(Y ;D|Φ(X)) ≤ EPXYD [logP (Y |Φ(X), D)] (16)
− EPD [EPXY [logP (Y |Φ(X), D)]] .

Since P (y|Φ(x), d) is unknown in practice, we need to use
a variational distribution q(y|Φ(x), d; θ) with parameter θ
to approximate it. Here, we adopt a neural net that predicts
Y based on feature Φ(X) and sensitive attribute D as our
variational model q(y|Φ(x), d; θ).

However, in many cases, X will be continuous, high-
dimensional data (e.g., images), while D will be a discrete,
categorical variable (e.g., gender, ethnicity). Therefore, it
would be more convenient to instead formulate the model as
q(y|Φ(x); θd), i.e., to train a group-specific model for each
d ∈ D to approximate P (y|Φ(x), d), instead of treating D
as a single input to the neural net.

Then, we can compute the first term of the upper bound
as the negative cross-entropy of the training samples using
the “correct” classifier for each group (group-specific loss),
and the second term as the cross-entropy of the samples
using a randomly-selected classifier (group-agnostic loss)
drawn according to the marginal distribution PD. Thus, by
replacing all expectations in (16) with empirical averages,
the regularizer is given by

LR ,
1

n

n∑
i=1

(
log q(yi|Φ(xi); θdi)−log q(yi|Φ(xi); θd̃i)

)
,

(17)

Algorithm 1 Training with sufficiency-based regularizer
Data: Training samples {(x1, y1, d1), . . . , (xn, yn, dn)},

{d̃1, . . . , d̃n}, which are drawn i.i.d. from the em-
pirical distribution P̂D

Initialize Φ, T (parameterized by θφ and θT , respectively)
and θd with pre-trained model, and let nd be the number
of samples in group d.

Compute the following losses:
Group-specific losses Ld = −

∑
i: di=d

log q(yi|Φ(xi); θ)

Joint loss L0 = 1
n

∑n
i=1 L

(
T (Φ(xi)), yi

)
Regularizer loss LR defined in (17) including both Group-

specific loss and Group-agnostic loss
for each training iteration do

for d = 1, . . . , |D| do // Fit group-specific
models

for j = 1, . . . ,M do // For each batch
θd ← θd − 1

nd
ηd∇θLd

end
end
for j = 1, . . . , N do // For each batch

θφ ← θφ − 1
nηf∇θφ(L0 + λLR) // Update

feature extractor
θT ← θT − 1

nη∇θTL0 // Update joint
classifier

end
end

where d̃i are drawn i.i.d. from the marginal distribution PD,
and for d ∈ D,

θd = arg max
θ

∑
i: di=d

log q(yi|Φ(xi); θ). (18)

Let T denote a joint classifier over all groups which is used
to make final predictions, such that ŷ = T (Φ(x)), then the
overall loss function is

min
θT ,θΦ

1

n

n∑
i=1

(
L
(
T (Φ(xi)), yi

)
+ λ log q(yi|Φ(xi); θdi)

− λ log q(yi|Φ(xi); θd̃i)
)
. (19)

In practice, we train our model by alternating between the
fitting steps in (18) and feature updating steps in (19), and
the overall training process is described in Algorithm 1 and
Figure 2. Intuitively, by trying to minimize the difference
between the log-probability of the output of the correct
model and that of the randomly-chosen one, we are trying
to enforce Φ(x) to have the property that all group-specific
models trained on it will be the same; that is:

q(y|Φ(x); θa) = q(y|Φ(x); θb), ∀a, b ∈ D. (20)

This happens when P (Y |Φ(X), D) = P (Y |Φ(X)), which
implies the sufficiency condition Y ⊥ D|Φ(X).
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Figure 2. Diagram illustrating the computation of our sufficiency-based loss when D is binary.

Table 1. Summary of datasets.

Dataset Modality Target Attribute

Adult Demographics Income Sex

CelebA Photo Hair
Colour

Gender

Civil Com-
ments

Text Toxicity Christianity

CheXpert-
device

X-ray Disease Support
Device

4. Experimental Results
4.1. Datasets and Setup

We test our method on four binary classification datasets
(while our method works with multi-class classification
in general, our metrics for comparison are based on the
binary case), which are commonly used in fairness: Adult1,
CelebA2, Civil Comments3, and CheXpert4. In all cases,
we use the standard train/val/test splits packaged with the
datasets and implemented our code in PyTorch. We set λ =
0.7 for all datasets as well, which we chose by sweeping
over values of λ across all datasets.

The Adult dataset (Kohavi, 1996) consists of census data
drawn from the 1994 Census database, with 48,842 sam-
ples. The dataX consists of demographic information about
individuals, including age, education, marital status, and
country of origin. Following (Bellamy et al., 2018), we one-
hot encode categorical variables and designate the binary-
quantized income to be the target label Y and sex to be

1https://archive.ics.uci.edu/ml/datasets/adult
2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
3https://www.kaggle.com/c/jigsaw-unintended-bias-in-

toxicity-classification/data
4https://stanfordmlgroup.github.io/competitions/chexpert

Figure 3. Overall accuracy-coverage curves for Adult dataset for
the three methods.

the sensitive attribute D. In order to simulate the bias phe-
nomenon discussed in Section 2.3, we also drop all but the
first 50 samples for which D = 0 and Y = 1. We then use a
two-layer neural network with 80 nodes in the hidden layer
for classification, as in (Mary et al., 2019), with the first
layer serving as the feature extractor and the second as the
classifier, and trained the network for 20 epochs.

The CelebA dataset (Liu et al., 2015) consists of 202,599
images of 10,177 celebrities, along with a list of attributes
associated with them. As in (Jones et al., 2020), we use the
images as dataX (resized to 224x224), the hair color (blond
or not) as the target label Y , and the gender as the sensitive
attribute D, then train a ResNet-50 model (He et al., 2016)
(with initialization using pre-trained ImageNet weights) for
10 epochs on the dataset, with the penultimate layer as the
feature extractor and the final layer as the classifier.

The Civil Comments dataset (Borkan et al., 2019) is a text-
based dataset consisting of a collection of online comments,
numbering 1,999,514 in total, on various news articles,
along with metadata about the commenter and a label in-
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(a) Baseline (b) DRO (c) Sufficiency-regularized

Figure 4. Group-specific precision-coverage curves for Adult dataset for the three methods.

(a) Baseline (b) DRO (c) Sufficiency-regularized

Figure 5. Group-specific precision-coverage curves for CheXpert dataset for the three methods.

dicating whether the comment displays toxicity or not. As
in (Jones et al., 2020), we let X be the text of the com-
ment, Y be the toxicity binary label, and D to be mention of
Christianity. We pass the data first through a BERT model
(Devlin et al., 2019) with Google’s pre-trained parameters
(Turc et al., 2019) and treat the output features as the input
into our system. We then apply a two-layer neural network
to the BERT output with 80 nodes in the hidden layer, once
again treating the layers as feature extractor and classifier,
respectively. We trained the model for 20 epochs.

The CheXpert dataset (Irvin et al., 2019) comprises of
224,316 chest radiograph images from 65,240 patients with
annotations for 14 different lung diseases. As in (Jones
et al., 2020), we consider the binary classification task of
detecting Pleural Effusion (PE). We set X to be the X-ray
image of resolution 224x224, Y is whether the patient has
PE, and D is the presence of a support device. We train a
model by fine-tuning the DenseNet-121 (Huang et al., 2017)
(with initialization using pre-trained ImageNet weights) for
10 epochs on the dataset, with the penultimate layer as the
feature extractor and the final layer as the classifier.

We compared our results to a baseline where we only op-
timize the cross-entropy loss, as in standard classification.
We also compared our method to the group DRO method of
(Sagawa et al., 2019), using the code provided publicly on
Github5, which has been shown to mitigate the disparity in
recall rates between groups in selective classification (Jones

5https://github.com/kohpangwei/group DRO

et al., 2020).

4.2. Results and discussion

Figure 3 shows the overall accuracy vs. coverage graphs for
each method on the Adult dataset. We can see that, in all
cases, selective classification increases the overall accuracy
on the dataset, as is to be expected.

However, when we look at the group-specific precisions
in Figure 4, we observe that, for the baseline method, this
increase in performance comes at the cost of worse per-
formance on the worst-case group. This phenomenon is
heavily mitigated in the case of DRO, but there is still a
gap in performance in the mid-coverage regime. Finally,
our method shows the precisions converging to equality as
coverage decreases very quickly. This can be explained by
looking at the margin distributions for each method. The
margin distribution histograms are plotted in Figure 6. We
can see that the margin distributions are mismatched for the
two groups in the baseline and DRO cases, but aligned for
our sufficiency-based method.

Figure 5 and 7 show the group precisions and margin dis-
tributions for the CheXpert dataset. We can see that our
method produces a smaller gap in precision at almost all
coverages compared to the other two methods, and improves
the worst-group precision. Note, in this use-case the pres-
ence of a support device (e.g., chest tubes) is spuriously
correlated to being diagnosed as having PE (Oakden-Rayner
et al., 2020). Thus, the worst-case group includes X-rays
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(a) Baseline (b) DRO (c) Sufficiency-regularized

Figure 6. Margin distributions for Adult dataset for the three methods.

(a) Baseline (b) DRO (c) Sufficiency-regularized

Figure 7. Margin distributions for CheXpert dataset for the three methods.

Table 2. Area under curve results for all datasets.

Dataset Method Area under
accuracy
curve

Area between
precision
curves

Adult Baseline 0.931 0.220
DRO 0.911 0.116
Ours 0.887 0.021

CelebA Baseline 0.852 0.094
DRO 0.965 0.018
Ours 0.975 0.013

Civil Baseline 0.888 0.026
Comments DRO 0.944 0.013

Ours 0.943 0.010

CheXpert- Baseline 0.929 0.064
device DRO 0.933 0.080

Ours 0.934 0.031

with a support device, that are diagnosed as PE negative.

Finally, in order to numerically evaluate the relative perfor-
mances of the algorithms for all the datasets, we compute
the following quantities: area under the average accuracy-
coverage curve (Franc & Průša, 2019) and area under the
absolute difference in precision-coverage curve (or area
between the precision-coverage curve for the two groups).
Table 2 shows the results for each method and dataset. From

this, it is clear that while our method may incur a small
decrease in overall accuracy in some cases, it reduces the
disparity between the two groups, as desired.

More experimental results can be found in Appendix B for
additional baselines on the Adult Dataset, as well as the
precision-coverage curves and margin distributions for the
CelebA and CivilComments datasets.

5. Conclusion
Fairness in machine learning has never been a more im-
portant goal to pursue, and as we continue to root out the
biases that plague our systems, we must be ever-vigilant
of settings and applications where fairness techniques may
need to be applied. We have introduced a method for enforc-
ing fairness in selective classification, using a novel upper
bound for the conditional mutual information. And yet, the
connection to mutual information suggests that there may
be some grander picture yet to be seen, whereby the various
mutual information-inspired methods may be unified. A
central perspective on fairness grounded in such a funda-
mental quantity could prove incredibly insightful, both for
theory and practice.
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