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Abstract

Deep convolutional networks have recently achieved
great success in video recognition, yet their practical re-
alization remains a challenge due to the large amount of
computational resources required to achieve robust recog-
nition. Motivated by the effectiveness of quantization for
boosting efficiency, in this paper, we propose a dynamic
network quantization framework, that selects optimal pre-
cision for each frame conditioned on the input for efficient
video recognition. Specifically, given a video clip, we train a
very lightweight network in parallel with the recognition
network, to produce a dynamic policy indicating which
numerical precision to be used per frame in recognizing
videos. We train both networks effectively using standard
backpropagation with a loss to achieve both competitive per-
formance and resource efficiency required for video recog-
nition. Extensive experiments on four challenging diverse
benchmark datasets demonstrate that our proposed approach
provides significant savings in computation and memory us-
age while outperforming the existing state-of-the-art meth-
ods. Project page: https://cs-people.bu.edu/
sunxm/VideoIQ/project.html.

1. Introduction
With the availability of large-scale video datasets [5, 36],

deep learning models based on 2D/3D convolutional neural
networks (CNNs) [6, 52, 48, 28, 17] have dominated the
field of video recognition. However, despite impressive
performance on standard benchmarks, efficiency remains a
great challenge for many resource constrained applications
due to the heavy computational burden of deep CNN models.

Motivated by the need of efficiency, existing research
efforts mainly focus on either designing compact mod-
els [41, 49, 11] or sampling of salient frames for efficient
recognition [60, 57, 34]. While these methods have shown
promising results, they all use 32-bit precision for process-
ing all the frames in a given video, limiting their achievable
efficiency. Specifically, orthogonal to the network design,
the computational cost of a CNN is directly affected by the
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Figure 1: A conceptual overview of our approach. Instead of
processing all the video frames with the same 32-bit precision,
VideoIQ learns to dynamically select optimal quantization preci-
sion conditioned on input clips for efficient video recognition. It is
computationally very efficient to process more informative frames
with high precision and less informative ones with lower precision,
without sacrificing accuracy. Best viewed in color.

bit-width of weights and activations [16, 68, 8], which sur-
prisingly as another degree of freedom for efficient video
inference, is almost overlooked in previous works. To illus-
trate this, let us consider the video in Figure 1, represented by
five uniformly sampled frames. A quick glance on the video
clearly shows that only the third frame can be processed
using 32-bit precision as this is the most informative frame
for recognizing the action “Long Jump”, while the rest can
be processed at very low precision or even skipped (i.e., pre-
cision set to zero) without sacrificing the accuracy (Bottom),
resulting in large computational savings compared to pro-
cessing all frames with same 32-bit precision, as generally
done in mainstream video recognition methods (Top).

Inspired by this observation, we introduce Video
Instance-aware Quantization (VideoIQ), which for the first
time advocates a novel input-dependent dynamic network
quantization strategy for efficient video recognition. While
dynamic network quantization looks trivial and handy at the
first glance, we need to address two challenges: (1) how to
efficiently determine what quantization precision to use per
target instance; and (2) given instance-specific precisions,
how can we flexibly quantize the weights and activations



of a single deep recognition network into various precision
levels, without additional storage or computation cost.

To address the aforementioned challenges, we propose a
simple end-to-end differentiable approach to learn a decision
policy that selects optimal precision conditioned on the input,
while taking both accuracy and efficiency into account in rec-
ognizing complex actions. We achieve this by sampling the
policy from a discrete distribution parameterized by the out-
put of a lightweight policy network, which decides on-the-fly
what precision should be used on a per frame basis. Since
these decision functions are discrete and non-differentiable,
we train the policy network using standard back-propagation
through Gumbel Softmax sampling [24], without resorting
to complex reinforcement learning, as in [60, 9, 63]. More-
over, instead of storing separate precision-specific models,
we train a single deep neural network for action recognition
using joint training, which enables us to directly adjust the
numerical precision by simply truncating the least signifi-
cant bits, without performance degradation. Our proposed
approach provides not only high computational efficiency
but also significant savings in memory–a practical require-
ment of many real-world applications which has been largely
ignored by prior works [34, 59, 35, 60].

We conduct extensive experiments on four standard video
recognition datasets (ActivityNet-v1.3 [3], FCVID [25],
Mini-Sports1M [28] and Mini-Kinetics [5]) to demonstrate
the superiority of our proposed approach over state-of-the-
art methods. Our results show that VideoIQ can yield
significant savings in computation and memory (e.g., aver-
age 26.0% less GFLOPS and 55.8% less memory), while
achieving better recognition performance, over the most
competitive SOTA baseline [34]. We also discover that the
decision policies learned using our method are transferable
to unseen classes and videos across different datasets. Fur-
thermore, qualitative results suggest that our learned policies
correlate with the distinct visual patterns in video frames,
i.e., our method utilizes 32-bit full precision only for rele-
vant video frames and process non-informative frames at low
precision or skip them for computation efficiency.

2. Related Work

Video Recognition. Much progress has been made in de-
veloping a variety of ways to recognize videos, by either
applying 2D-CNNs [28, 52, 45, 46] or 3D-CNNs [48, 5, 17].
Despite promising results, there is a significant interest in
developing more efficient models with reasonable perfor-
mance [41, 49]. SlowFast network [12] employs two path-
ways for recognizing actions by processing a video at both
slow and fast frame rates. Many works utilize 2D-CNNs for
efficient recognition by modeling temporal causality using
different aggregation modules [52, 67, 10, 32]. Expansion
of 2D architectures across frame rate, spatial resolution, net-

work width, is proposed in [11]. While these approaches
bring reasonable efficiency improvements, all of them pro-
cess the video frames using same 32-bit precision, regardless
of information content in each input frame, which varies in
most real-world long videos. In contrast, our approach dy-
namically selects bit-width per input, to strategically allocate
computation at test time for efficient recognition.

Dynamic Computation. Dynamic computation to im-
prove efficiency has been studied from multiple perspec-
tives [1, 2, 50, 53, 15, 37, 13, 33]. Representative meth-
ods for image classification, dynamically adjust network
depth [13, 33, 58, 21, 62], width [65, 7, 20], perform rout-
ing [26, 33] or switch resolutions [61]. Similar in spirit,
dynamic methods for efficient video recognition adaptively
select salient frames/clips [63, 60, 30, 9, 57, 23], utilize au-
dio [14], reduce feature redundancy [38], or select frame
resolutions [59, 34]. Recently, AdaFuse [35] proposes adap-
tive fusion of channels from current and past feature maps on
a per instance basis, for recognizing video actions. Our ap-
proach is closely related yet orthogonal to these approaches
as it focuses on network quantization to dynamically select
the optimal bit-width conditioned on inputs, in pursuit of
computational efficiency without sacrificing accuracy. More-
over, unlike existing works, our framework requires neither
complex RL policy gradients [60, 57, 63] nor additional
modalities such as audio [14, 30] to learn dynamic policies.

Network Quantization. Low-precision networks [16, 68,
8], have attracted intense attention in recent years. Early
works such as [16, 31, 68] mainly focus on quantizing
weights while using 32-bit activations. Recent approaches
quantize both weights and activations through using uni-
form quantization that uses identical bit-width for all
layers [66, 8, 39], or mixed precision quantization that
uses different bit-widths for different layers or even chan-
nels [51, 4, 56]. Binary networks [22, 42] constrain both
weights and activations to binary values, which brings great
benefits to specialized hardware devices. Designing effi-
cient strategies for training low-precision [70, 29, 69] or any-
precision networks [27, 64] that can flexibly adjust the preci-
sion during inference is also another recent trend in quantiza-
tion. Despite recent progress, the problem of quantization for
video recognition models is rarely explored. Moreover, ex-
isting methods perform quantization in a static manner with
a fixed computational cost, leaving adaptive quantization
conditioned on inputs an open problem.

3. Proposed Method

Given T sampled frames from a video V =
{x1, x2, · · · , xT } with the action label y and a set of n candi-
date bit-widths (precisions) B = {b1, b2, · · · , bn} (assuming
b1 > b2 > · · · > bn), our goal is to seek (1) a policy func-
tion g : V → BT that automatically decides the optimal
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Figure 2: Illustration of our proposed approach. VideoIQ consists of a very lightweight policy network and a single backbone network
for recognition which can be simply quantized to lower precisions by truncating the least significant bits. The policy network decides what
quantization precision to use on a per frame basis, in pursuit of a reduced overall computational cost without sacrificing recognition accuracy.
We train both networks using back-propagation with a combined loss of standard cross-entropy and efficiency for video recognition. We
additionally distill knowledge from a pre-trained full-precision model to guide the training of lower precisions. During inference, each frame
is sequentially fed into the policy network to select optimal precision for processing the current frame through the recognition network and
then the network averages all the frame-level predictions to obtain the video-level prediction. Best viewed in color.

bit-width b for the frame xi for processing in the recognition
network, (2) a single recognition network f : V → y which
can be quantized to different precisions in B without addi-
tional storage or computation cost. With the desired policy
network g and recognition network f , our main objective
is to improve accuracy, while taking the resource efficiency
into account for video action recognition. Note that given
the optimal bit-width b for the frame xi, we quantize all
the network weights and activations to the same bit-width b,
which is well supported by existing hardwares.

3.1. Preliminaries

We denote the full-precision network weights by W and
activations by A. Given a certain precision with bit-width b
and a quantization function Q, we denote the quantization
of W and A as Q(W, b) = Ŵb and Q(A, b) = Âb. In
this paper, we use DoReFa [68] for weight quantization and
PACT [8] for activation quantization.
Weight Quantization. DoReFa [68] normalizes W into
[−1, 1] and then rounds it to the nearest quantization levels:

Ŵb = 2× quantizeb(
tanh(W)

2max tanh(W)
+

1

2
)− 1, (1)

quantizeb(x) =
1

2b − 1
× ⌊(2b − 1)x⌉, (2)

where ⌊.⌉ is the rounding operation.
Activation Quantization. PACT [8] introduces a learnable
clipping value α for activations in each layer. More specif-
ically, the activation A is first clipped into [0, α] and then
rounded to the nearest quantization levels:

Âb = α× quantizeb(clip(A, 0, α)/α).

3.2. Approach Overview

Figure 2 shows an overview of our approach. In general,
we learn a instance-specific policy ai that decides on-the-
fly which precision to use (or even skip) for processing the
current frame xi, and a video classifier f which can be flexi-
bly quantized to the desired precision of the current frame
by simply truncating the least significant bits without any
extra computation or memory cost. To this end, VideoIQ
consists of a lightweight policy network g and a video recog-
nition network f . The policy network g contains a feature
extractor and an LSTM module to learn the discrete decisions
of which precision to use, per input frame (see Section 3.3).
Moreover, it is often unnecessary and inefficient to process
every frame in a video due to large redundancy resulting
from static scenes or frame quality being very low. Thus, we
skip frames (i.e., precision set to zero) in addition to dynamic
selection of precisions in an unified framework to improve
efficiency in video recognition. To further enable flexible
and scalable quantization, we learn the video classifier as
an any-precision network and design a simple yet effective
optimization scheme to ensure that the single set of network
weights get executed with multiple precisions without addi-
tional storage and computation cost (see Section 3.4).

During the training, we first learn the any-precision recog-
nition network and then optimize the policy network with
Gumbel-Softmax Sampling [24] through standard back-
propagation. We design the loss to achieve both compet-
itive performance and computational efficiency (measured
by FLOPS [54]) required for video recognition. We addi-
tionally distill knowledge from a pre-trained full-precision
model to guide training of the lower precisions. During the
inference, each video frame is sequentially fed into the pol-
icy network whose output decides the right precision to use



for the given frame and then the frame is processed through
the recognition network with the predicted precision to gen-
erate a frame-level prediction. Finally, the network averages
predictions of all the frames as the final video-level predic-
tion. It is worth noting that the policy network is designed
to be very lightweight so that its computational overhead is
negligible (e.g., MobileNetv2 [43] in our work).

3.3. Learning Dynamic Quantization Policy

VideoIQ learns the frame-wise policy ai to decide
which precision to process the frame xi or directly skip
it where skipping can be viewed as processing the frame
with 0-bit. So our entire action space is Ω = B ∪ {0}. We
generate decision ai ∈ Ω,∀i ∈ [1, T ] from the policy net-
work g sequentially. We compose the policy network with a
feature extractor ϕ followed by an LSTM module:

hi, oi = LSTM(ϕ(xi), hi−1, oi−1), (3)

where hi and oi are hidden state and outputs of LSTM at the
time step i. We further compute the distribution πi ∈ R|Ω|

over our action space Ω from hi:

πi = Softmax(fc(hi)). (4)

However, sampling policy ai from the discrete distribu-
tion πi is non-differentiable which makes direct optimization
difficult. One way to solve this is to model the optimiza-
tion problem as a reinforcement learning problem and then
derive the optimal parameters of the policy network using
policy gradient methods [55]. However, policy gradient is
often complex, unwieldy to train and requires techniques to
reduce variance during training as well as carefully selected
reward functions. In contrast, we use Gumbel-Softmax Sam-
pling [24] to circumvent this non-differentiability and make
our framework fully differentiable, as in [59, 47].
Gumbel-Softmax Sampling. The Gumbel Softmax
trick [24] substitutes the original non-differentiable sam-
ple from a discrete distribution with a differentiable sample
from a corresponding Gumbel-Softmax distribution.

Specifically, instead of directly sampling ai from its dis-
tribution πi, we generate it as,

ai = argmax
j∈Ω

(
log πi(j) +Gi(j)

)
, (5)

where Gi = − log(− logUi) is a standard Gumbel distribu-
tion with Ui sampled from a uniform distribution Unif(0, 1).
To remove the non-differentiable argmax operation in Eq. 5,
the Gumbel Softmax trick relaxes one-hot(ai) ∈ {0, 1}|Ω|

(the one-hot encoding of ai) to pi ∈ R|Ω| with the reparame-
terization trick [24]:

pi(j) =
exp

(
(log πi(j) +Gi(j))/τ

)∑
k∈Ω

exp
(
(log πi(k) +Gi(k))/τ

) , (6)

where j ∈ Ω and τ is the temperature of the softmax. Clearly,
when τ > 0, the Gumbel-Softmax distribution pi is smooth
so πi can be directly optimized by gradient descent, and
when τ approaches 0, the soft decision pi becomes the same
as one-hot(ai). Following [15, 47], we set τ = 5 as the ini-
tial value and gradually anneal it down to 0 during training.

3.4. Any-Precision Video Recognition

Given frame-specific precisions, quantizing weights and
activations of a single network while recognizing videos is
a major challenge. A naive strategy is to manually train
different models tailored for the different precision and then
route frames to the corresponding models to generate pre-
dictions. However such a strategy requires time-consuming
training for each of the models and also increases the mem-
ory storage cost, making it inefficient for many real-time
applications. To tackle this problem, we adopt any-precision
recognition [27, 64] that makes a single model be flexible
to any numerical precision during the inference. Specifi-
cally, we first modify the weight quantizer to enable the
network parameters to get quantized to lower precision with
low computation cost after the training. Then, we propose
a simple and effective learning scheme for training of the
any-precision video recognition network.

With the original DoReFa quantization [68] (Eq. 1 and 2),
all numerical precisions need to be quantized down from the
full-precision value. Thus, the repeated weight quantizations
cause redundant computation when the recognition network
frequently switches across different precisions. To reduce
computational cost of switching operation, we quantize full
precision weight W to the largest bit-width b1 and then
truncate least significant b1 − b bits to get quantized weight
Ŵb. We save the quantized b1-bit network weights after the
training. Benefiting from this modified quantization, we only
need to discard the extra bits to switch to lower precisions
during inference. Furthermore, we align E[Ŵb] with E[Ŵb1 ]
to minimize the mean discrepancy caused by discarded bits.

Inspired by [65, 27], we jointly train a single network
under different bit-widths with shared weights for any-
precision video recognition. Specifically, we gather losses of
all precisions with same input batch and then update the net-
work. To get the loss of a precision with bit-width b, we feed
the input video and quantize network weights and activations
to b-bit for every frame. To resolve mismatch in statistics of
activations with different precisions, we use a separate set of
Batch Normalization layers and clipping level parameters for
different precisions [65]. Moreover, following the success of
knowledge distillation [19], we transfer knowledge from a
pretrained full-precision recognition network to guide train-
ing of lower precisions because the full-precision weights is
expected to give confident predictions, and provide valuable
knowledge in its soft logits, while the low-precision student
gains the knowledge by mimicking the teacher.



3.5. Losses

For video action recognition, we minimize standard cross-
entropy loss between predicted label and ground truth action:

Lce(V |A) = E[−y log(f(V |A))], (7)

where A = a1, a2, · · · , aT represents precisions to use for
the sampled T frames, which can be either predicted by the
lightweight policy network (A = g(V )) or set manually.

To better guide the optimization of the model with lower
capacity, e.g. the recognition network with lower precision,
we utilize a distillation loss Lkd to transfer knowledge from a
pretrained full-precision video recognition network (teacher)
by taking Kullback–Leibler (KL) divergence between soft-
logits of our model yA and of the teacher network yt as

Lkd(V |A) = KL(yt||yA) =
m∑
i=1

(yt)i log
(yt)i
(yA)i

, (8)

where m is the number of video categories and (·)i denotes
the i-th element of the vector. Thus, given the input video
V , the overall loss Lf to optimize the any-precision video
recognition network f is defined as

Lf (V ) =
∑

A=bT1 ,···bTn

Lce(V |A) + Lkd(V |A). (9)

To address computational efficiency, we pre-compute
FLOPs [54] needed for one frame to get processed in the
recognition network with different candidate precisions in
B. We directly minimize FLOPs usage per video with the
generated policy A, to reduce the computational cost as

Le(A) =

T∑
i=1

(FLOP(ai)). (10)

Furthermore, we introduce two additional regularizers to
better optimize the policy network. First, we enforce a bal-
anced policy usage over the entire action space to avoid the
policy network learning some sub-optimal solutions where
some actions are totally ignored. More formally, we define
the balanced policy usage loss Lb as

Lb(A) =
∑
k∈Ω

(E[
1

T

T∑
i=1

1(ai = k)]− 1

|Ω|
). (11)

Second, we minimize the entropy of the learned prob-
ability distribution over the action space Ω of each frame.
It forces the policy network to avoid randomness during
the inference by generating deterministic prediction for the
precision to use for each video frame:

Ld(π) =

T∑
i=1

H(πi), (12)

where H(·) is the entropy function. Finally, the overall loss
Lg to optimize the policy network g is defined as

Lg(V ) = Lce(V |A) + Lkd(V |A)

+ w1Le(A) + w2Lb(A) + w3Ld(π), (13)

where A = g(V ), and w1, w2 and w3 are hyperparameters
to balance loss terms. In summary, we first jointly train the
any-precision recognition network f with all precisions in B
(using Eq. 9), and then train policy network g (using Eq. 13)
to generate policy over the action space Ω per input frame.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our approach using four
datasets, namely ActivityNet-v1.3 [3], FCVID [25], Mini-
Sports1M [28] and Mini-Kinetics [5]. ActivityNet contains
10, 024 videos for training and 4, 926 videos for validation
across 200 categories. FCVID consists of 45, 611 videos for
training and 45, 612 videos for testing across 239 classes.
Mini-Sports1M [14] is a subset of full Sports1M dataset [28]
containing 30 videos per class in training and 10 videos per
class in testing over 487 classes. Mini-Kinetics [6] is a sub-
set of full Kinetics400 [5] dataset containing 121, 215 videos
for training and 9, 867 videos for testing across 200 classes.
Implementation Details. We adopt temporal segment net-
work (TSN) [52] to aggregate the predictions over T = 16
uniformly sampled frames from each video. We use ResNet-
18 and ResNet-50 [18] for the recognition network while
MobileNetv2 [43] combined with a single-layer LSTM (with
512 hidden units) to serve as policy network in all our ex-
periments. To save computation, we use lower resolution
images (84× 84) in policy network. We set the action space
Ω = {32, 4, 2, 0} in all experiments, i.e., the policy net-
work can choose either one out of {32, 4, 2} precision or
skip frame for efficient recognition. We first train the any-
precision recognition network (pretrained from ImageNet
weights) for 100 epochs to provide a good starting point
for policy learning and then train the policy network for 50
epochs on all datasets. We use separate sets of learning pa-
rameters (learning rate, weight decay) for clipping values of
each precision. Following [68, 8], we do not quantize input,
first layer and last layer of the network. More implementa-
tion details are included in the supplementary material.
Baselines. We compare our approach with the following
baselines and existing approaches. First, we consider a 2D-
CNN based “Uniform” baseline that uses 32-bit precision to
process all the sampled frames and then averages the frame-
level results as the video-level prediction. We also compare
with two more variants of uniform baseline that uses lower
precisions such as 4-bit and 2-bit respectively to process the
video frames. Second, we compare with “Ensemble” base-
line that gathers all the frame-level predictions by processing



Model ActivityNet FCVID Mem.
(MB)mAP (%) GFLOPs mAP (%) GFLOPs

ResNet-18
Uniform (32-bit) 69.7 29.1 77.6 29.1 43.1
Uniform (4-bit) 68.0 7.3 76.5 7.3 5.4
Uniform (2-bit) 65.2 1.8 74.3 1.8 2.7

Ensemble 70.7 38.2 78.8 38.2 51.2
VideoIQ 70.9 9.5 79.1 9.4 50.2

ResNet-50
Uniform (32-bit) 72.5 65.8 81.0 65.8 91.4
Uniform (4-bit) 71.7 16.5 79.3 16.5 11.4
Uniform (2-bit) 69.3 4.1 78.5 4.1 5.7

Ensemble 74.7 86.4 83.0 86.4 108.5
VideoIQ 74.8 28.1 82.7 27.0 98.6

Table 1: Video recognition results on ActivityNet and FCVID.
Our approach VideoIQ outperforms all the simple baselines.

them at different precision (instead of selecting an optimal
precision per frame). This serves as a very strong baseline
for classification, at the cost of heavy computation. Finally,
we compare our method with existing efficient video recog-
nition approaches, including LiteEval [59] (NeurIPS’19),
SCSampler [30] (ICCV’19), AR-Net [34] (ECCV’20), and
AdaFuse [35] (ICLR’21). We directly quote the numbers re-
ported in the published papers when possible or use authors
provided source codes [59, 35] using the same backbone and
experimental settings for a fair comparison.
Metrics. We compute either mAP (mean average precision)
or Top-1 accuracy depending on datasets to measure per-
formance of different methods. We follow [54, 40, 44] and
measure computational cost with giga floating-point oper-
ations (GFLOPs), which is a hardware independent metric.
Specifically, given FLOPs of a full-precision layer by a, the
FLOPs of m-bit weight and n-bit activation quantized layer
is mn

64 ×a. We also measure memory usage (MB) represented
by the storage for parameters of the network, as in [54].

4.2. Results and Analysis

Comparison with Traditional Uniform Baselines. We
first compare VideoIQ using different backbones (ResNet-
18 and ResNet-50) to show how much performance our dy-
namic approach VideoIQ can achieve compared to simple
2D-CNN based baselines on both ActivityNet and FCVID
datasets. As shown in Table 1, our approach consistently out-
performs the full-precision uniform baseline (32-bit) in both
mAP and GFLOPS, with minimal increase in memory on
both datasets. Using ResNet-18 as the backbone, VideoIQ
obtains an mAP of 70.9% and 79.1%, requiring 9.5 and 9.4
GFLOPS on ActivityNet and FCVID respectively. Uniform
quantization with low bit-widths leads to a significant re-
duction in computation and memory but they suffer from a
noticeable degradation in recognition performance, e.g., the
2-bit performance is 4.5% and 3.3% lower than the 32-bit
counterpart on ActivityNet and FCVID respectively.

Similarly, with ResNet-50, VideoIQ offers 56.7% (65.8
vs 28.1) and 58.9% (65.8 vs 27.0) savings in GFLOPS while

Model ActivityNet FCVID Mem.
(MB)mAP (%) GFLOPs mAP (%) GFLOPs

LiteEval 72.7 95.1 80.0 94.3 177.2
SCSampler 72.9 42.0 81.0 42.0 98.6

AR-Net 73.8 33.5 81.3 35.1 223.4
AdaFuse 73.1 61.4 81.6 45.0 151.2
VideoIQ 74.8 28.1 82.7 27.0 98.6

Table 2: Comparison with state-of-the-art methods on Activi-
tyNet and FCVID. VideoIQ achieves the best mAP while offer-
ing significant savings in both GFLOPS and Memory (MB).

Model Mini-Sports1M Mini-Kinetics Mem.
(MB)mAP (%) GFLOPs Tops-1 (%) GFLOPs

LiteEval 44.7 66.2 61.0 99.0 177.2
SCSampler 44.3 42.0 70.8 42.0 98.6

AR-Net 45.0 37.6 71.7 32.0 223.4
AdaFuse 44.1 60.3 72.3 23.0 151.2
VideoIQ 46.4 26.8 72.3 20.4 98.6

Table 3: Comparison with state-of-the-art methods
on Mini-Sports1M and Mini-Kinetics. Our approach
VideoIQ (w/ ResNet-50) obtains the best performance with
great savings in computation (GFLOPS) and memory (MB).

outperforming the Uniform (32-bit) baseline by 2.1% and
2.7% in mAP on ActivityNet and FCVID, respectively. We
further compare with 8-bit Uniform Baseline that uses same
percentage of random skipping as VideoIQ (i.e. 8% ran-
dom skipping on ActivityNet). With ResNet-50, our ap-
proach outperforms this baseline by 2.7% (72.1% vs 74.8%),
showing effectiveness of learned policy in selecting optimal
quantization precision per frame while recognizing videos.

As shown in Table 1, Ensemble achieves comparable
recognition performance because it is a very strong base-
line that gathers all the predictions by processing frames
through multiple backbones. However, VideoIQ provides
67.4% and 68.7% computational savings including a 10%
savings in memory over the Ensemble baseline on Activ-
ityNet and FCVID respectively, showing the importance
of instance-aware dynamic quantization for efficient video
recognition. Moreover, we also compare with a Weighted
Ensemble baseline, where weights are assigned based on
entropy of softmax scores to reflect prediction confidence of
different predictions. We observe that it only achieves 0.3%
higher mAP while requiring 67.4% more computation than
our method on ActivityNet (75.1% vs 74.8%). Note that
VideoIQ requires less computation on average on FCVID
than ActivityNet as FCVID contains more static videos with
high redundancy compared to ActivityNet that consists of
action-centric videos with rich temporal information.

Comparison with State-of-the-Art Methods. Tables 2-3
summarize the results and comparisons with existing dy-
namic inference methods on all four datasets. Our approach
is clearly better than all the compared methods in terms
of both accuracy and resource efficiency (computation and
memory), making it suitable for efficient video recognition.
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Figure 3: Computational cost (GFLOPS) vs mean Average
Precision (%) on ActivityNet dataset. VideoIQ (red points)
achieves the best trade-off when compared to existing methods.

VideoIQ obtains an mAP (accuracy for Mini-Kinetics)
of 74.8%, 82.7%, 46.4% and 72.3%, while requiring 28.1,
27.0, 26.8 and 20.4 GFLOPs on ActivityNet, FCVID, Mini-
Sports1M and Mini-Kinetics, respectively. Note that while
most of the compared methods reduce computation at the
cost of significant increase in memory, our approach im-
proves computational efficiency by using a model whose
memory size is just slightly larger than the 32-bit model.

Among the compared methods, AR-Net is the most com-
petitive in terms of computational efficiency. However,
VideoIQ consistently outperforms AR-Net in recognition
performance while providing 26.0% savings on average in
computation and 55.8% savings in memory. This is because
of our two introduced components working in concert: dy-
namic quantization for computational efficiency and use of a
single any-precision recognition network instead of separate
models for memory efficiency. Likewise when compared
with the recent method AdaFuse, our approach offers an
average 41.1% and 34.7% reduction in computation and
storage memory while improving the recognition perfor-
mance (maximum 2.3% on Mini-Sports1M) across all the
datasets. AdaFuse obtains the best performance compared
to other existing methods on Mini-Kinetics but it fails to
achieve similar performance on untrimmed video datasets.
We suspect that being a method that relies on efficient reuse
of history feature maps, it fails to aggregate the informa-
tion of all time stamps when the video gets very long, as
in untrimmed datasets. In summary, VideoIQ establishes
new state-of-the-art for the task of efficient video recognition
on four datasets, improving previous best result in terms of
accuracy, computational efficiency and memory efficiency.

Figure 3 compares our approach to the existing meth-
ods by varying computational budgets on ActivityNet. Our
method consistently outperforms all the compared methods
and achieves the best trade-off between computational cost
and accuracy, which once again shows that VideoIQ is an
effective and efficient design for video recognition.

Train
Test

ActivityNet FCVID Mini-Sports1M Mini-Kinetics

ActivityNet 74.8 82.7 46.3 71.6
FCVID 74.4 82.8 45.8 72.1

Mini-Sports1M 74.6 82.6 46.4 72.2
Mini-Kinetics 74.7 82.7 46.3 72.3

Table 4: Transferring learned policies. Diagonal numbers refer
to training and testing the quantization policy on the same dataset
while non-diagonal numbers refer to learning the policy on one
dataset (rows) and testing on others (columns).

Transferring Learned Policies. We analyze transferability
of our learned policy by performing cross-dataset experi-
ments, i.e., learning policy on one dataset while testing on
the other. Specifically, we take the policy network trained
on one dataset and utilize it directly for testing along with a
trained any-precision recognition network on another dataset.
Table 4 summarizes the results. As expected, training and
testing on the same dataset provides the best performance
on all cases (marked in blue). However, the negligible dif-
ference among the values across each column clearly shows
that policies learned using our method are transferable to
unseen classes and videos across different datasets.

Qualitative Analysis. To better understand the learned pol-
icy, we visualize selected precision per input frame in Fig-
ure 4. Videos are uniformly sampled in 8 frames. Overall,
our approach VideoIQ focuses on the right quantization
precision to use per frame for correctly classifying videos
while taking efficiency into account. VideoIQ processes
the most indicative frames in 32-bit precision while it uses
lower precision (or skips) for frames that irrelevant to the
action (e.g., “Playing saxophone” and “Snow Tubing”). Sim-
ilarly in the case of “Playing violin” and “Mixing drinks”,
after being confident about the prediction, it interestingly
avoids using the 32-bit precision even if informative content
appear later in the video. More qualitative examples are
included in the supplementary material.

Figure 5 shows the overall policy distribution on differ-
ent datasets. Our approach leads to distinctive policy pat-
terns representing different characteristics of datasets. For
example, while only few frames on ActivityNet use 2-bit
precision, about 30% of the frames on the other datasets
can be processed using 2-bit precision, leading to different
amount of computational savings across datasets. VideoIQ
skips very few frames on Mini-Kinetics (2%), which is be-
cause Mini-Kinetics dataset contains short trimmed videos
(6 − 10 seconds) while the remaining datasets consists of
long untrimmed videos, lasting up to 5 minutes.

4.3. Ablation Studies

We present the following ablation experiments using
ResNet-50 on ActivityNet dataset to show the effectiveness
of different components in our proposed method.
Effect of Different Losses. Table 5 summarizes the effect
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Figure 4: Qualitative examples from ActivityNet dataset. Our approach VideoIQ processes more informative frames with high
precision and less informative ones with lower precision or skip them when irrelevant, for efficient video recognition. Best viewed in color.

ActivityNet FCVID Mini-Sports1M Mini-Kinetics

Figure 5: Dataset-specific policy distribution.

Lce Lkd Le Lb Ld mAP (%) GFLOPs
✓ ✓ ✓ ✓ 73.5 29.0
✓ ✓ 75.1 56.4
✓ ✓ ✓ 74.5 34.6
✓ ✓ ✓ ✓ 74.3 32.0
✓ ✓ ✓ ✓ ✓ 74.8 28.1

Table 5: Effect of different losses on ActivityNet.

of different losses on ActivityNet. Training without knowl-
edge transfer from the 32-bit model (top row: by turning off
Lkd) only obtains a mAP of 73.5% with similar GFLOPS as
ours, which shows that it is important to utilize soft targets
of the full-precision model as the teacher to guide lower
precisions in learning. As expected, training by setting Le

to 0 achieves the highest mAP of 75.1% while requiring
38.5% more GFLOPS compared to the one that uses effi-
cient loss in training (2nd vs 3rd row). Finally, adding both
regularizations (Lb and Ld) during the policy learning leads
to the best performance with least computation showing the
effectiveness of different losses in our framework.

Effect of Decision Space. We investigate the effect of
decision space Ω by using different combinations of pre-
cision and skipping. As shown in Table 6, only skipping
frames (i.e., Ω = {32, 0}) leads to an mAP of 72.9% while
setting the decision space to choose only precisions (i.e.,
Ω = {32, 4, 2}) leads to an mAP of 74.5% on Activi-
tyNet. Compared to all the alternatives, the best strategy
is to combine the set of precisions with skipping by setting
Ω = {32, 4, 2, 0} for achieving top performance of 74.8%
in mAP with 28.1 GFLOPS on ActivityNet dataset.

Comparison with Random Policy. We compare with ran-
dom policy that uses the same backbone framework but
randomly samples policy actions from uniform distribution

Decision Space Ω mAP (%) GFLOPs
{32, 0} 72.9 31.6
{32, 4, 2} 74.5 31.4
{32, 4, 0} 74.7 32.8
{32, 2, 0} 74.0 31.2

{32, 4, 2, 0} 74.8 28.1

Table 6: Effect of different decision space on ActivityNet. Note
that 0 indicates skipping the frame for processing by the classifier.

and observe that our approach outperforms it by 2% in mAP
(72.8% vs 74.8%) on ActivityNet, which demonstrates effec-
tiveness of learned policy in selecting optimal quantization
precision per frame while recognizing videos. We also ob-
serve similar improvements (∼ 2%− 3%) on other datasets.
Effectiveness of Any-Precision Recognition Network.
We use three separate precision specific quantized models as
part of the classifier and route frames to the corresponding
models based on the policy to generate predictions. Our ap-
proach using separate models on ActivityNet (with ResNet-
50) achieves an mAP of 74.9% (an improvement of only
0.1%) while requiring 34.0 GFLOPS and 115.6MB of mem-
ory, in contrast to 28.1 GFLOPS and 50.2MB of memory
with a single any-precision network. Similarly, use of sep-
arate models on Mini-Sports1M yields only 0.1% improve-
ment in mAP with 7.1% more computation and 56.5% of
additional memory, compared to an any-precision network.
This clearly shows the effectiveness of our any-precision
network over individual quantized models in obtaining very
competitive performance with less computation and memory.

5. Conclusion
In this paper, we introduce video instance-aware quanti-

zation that decides what precision should be used on a per
frame basis for efficient video recognition. Specifically, we
utilize a lightweight policy network to predict these decisions
and train it in parallel with an any-precision recognition net-
work with the goal of achieving both competitive accuracy
and resource efficiency. Comprehensive experiments on four
challenging and diverse datasets demonstrate the superiority
of our approach over existing state-of-the-art methods.
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