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Abstract

Nowadays, there is an abundance of data involving im-
ages and surrounding free-form text weakly correspond-
ing to those images. Weakly Supervised phrase-Grounding
(WSG) deals with the task of using this data to learn to lo-
calize (or to ground) arbitrary text phrases in images with-
out any additional annotations. However, most recent SotA
methods for WSG assume an existence of a pre-trained ob-
Jject detector, relying on it to produce the ROIs for localiza-
tion. In this work, we focus on the task of Detector-Free
WSG (DF-WSG) to solve WSG without relying on a pre-
trained detector. The key idea behind our proposed Ground-
ing by Separation (GbS) method is synthesizing ‘text to
image-regions’ associations by random alpha-blending of
arbitrary image pairs and using the corresponding texts of
the pair as conditions to recover the alpha map from the
blended image via a segmentation network. At test time,
this allows using the query phrase as a condition for a non-
blended query image, thus interpreting the test image as a
composition of a region corresponding to the phrase and
the complement region. Our GbS shows an 8.5% accu-
racy improvement over previous DF-WSG SotA, for a range
of benchmarks including Flickr30K, Visual Genome, and
Referlt, as well as a complementary improvement (above
7%) over the detector-based approaches for WSG.

1. Introduction

As multi-modal text + images data sources become abun-
dant, so grows the importance of natural free-form text su-
pervision [57] over the more traditional image labels or
image bounding boxes annotation methods. Such multi-
modal data (i.e. image-text pairs) can be almost effort-
lessly and autonomously collected from web pages and doc-
uments with illustrations, user captioned personal photos,
transcribed videos, and many more. However, such form
of automatic supervision poses significant challenges for
learning. First, it is noisy in a sense that some of the text
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Figure 1. Illustration of our compositional approach. (a) The
model is trained to decompose random alpha-blendings of pairs
of images conditioned on their associated texts; (b) At test time,
the model interprets any image as a composition of two image re-
gions, related and unrelated to the conditioning query phrase, thus
grounding the phrase to the image pixels.

words are not relevant to the image; second, it is not well
localized in a sense that it is unknown which parts of the
image correspond to which parts of the text. In contrast, in
traditional annotation the training signal is highly localized:
isolated and cropped object images are commonly used in
classification, and bounding boxes or polygons around the
objects in detection and/or segmentation. However, these
annotations are commonly manual and are costly to collect.

The above discussion highlights the importance of
weakly (and autonomously) supervised multi-modal (im-
ages + text) learning in general, and Weakly Supervised
Grounding (WSG) in particular. In WSG, the model is ex-
pected to learn to localize (highlight) image regions corre-
sponding to text phrases. In a sense, WSG is a detection
task where the traditional ‘noun object labels’ are replaced



by an unbounded set of things describable using natural lan-
guage. Moreover, the WSG model is expected to learn from
image + free-form corresponding text (e.g. caption) pairs
without any annotations for correspondence of text words
or phrases to image regions.

While earlier WSG methods [1, , , ] were
’detector-free’, all the more recent state-of-the-art (SotA)
methods rely on the existence of pre-trained object detec-
tors being the source of the localization Rols for grounding
[11,23,67,8,9, 46]. Although this ’detector-based’ setup
benefits from higher performance compared to Detector-
Free WSG (DF-WSG) methods, in a sense it shifts away
from the true WSG, as the detector is trained using bound-
ing boxes (which are forbidden in WSG). The use of a
detector is indeed plausible when the set of objects sup-
ported by the detector significantly overlaps the set of ob-
jects (nouns or their taxonomy siblings) appearing in the
WSG texts. However, if we need to train for WSG in a dif-
ferent domain (e.g. news [43] or technical documents) or
for a significantly different set of objects, we are likely to
be required to collect a large set of bounding boxes to train
a new detector. Experimental evidence for this appears, for
example, in a recent detector-based WSG work [11]', where
it was noted that using the 80-categories COCO-trained de-
tector for the Flickr30K and Visual Genome (VG) WSG
benchmarks performs poorly, as opposed to their best WSG
result obtained with the VG trained detector that supports
many more relevant categories.

In this work, we propose an approach for WSG that does
not rely on pre-trained detectors and thus addresses the DF-
WSG task. Our approach is based on the idea of image
and text compositionality. Having an image + correspond-
ing text pair, we can consider the image as a composition
of image regions glued together (like puzzle pieces) to form
the whole image, each corresponding to a phrase of the text.
While for a given single image + text pair the composition
parts are not known (due to the WSG setting), we can eas-
ily simulate a more complex composition by comprising it
from any two random image + text pairs. To do so, we can
blend the images of the two pairs using a random alpha map
«, thus making the respective texts of the pairs correspond
to the known « and 1 — o mapped complementary regions
of the blended image. In this way, we can create a reliable
localized synthetic training signal for the DF-WSG model
that learns to perform text grounding by learning to separate
the blended image to its c-mapped constituents conditioned
on the respective texts (Figure 1a). At test time, we can ap-
ply the trained model on a non-blended query image, which
when conditioned on the query phrase is expected to decom-
pose the image to constituents related and not related to the
conditioning text (Figure 1b). In addition to the separation
loss, we further propose two regularization loss terms which

Iplease see the footnote on page 6 in [11]

are important for improving the model performance on non-
blended test images. These losses help to prevent the model
from learning blending artifacts, as well as to prevent the
model from making incorrect references.

Our Grounding by Separation (GbS) approach obtains
a significant, up to 8.5%, improvement over previous DF-
WSG SotA [1] for a range of phrase grounding benchmarks
including Flickr30K, Visual Genome, and Referlt. More-
over, our performance on these benchmarks is not only
comparable to the detector-based WSG SotA [1 1, 23, 46], it
is also complementary to them, as our approach is ‘detector-
free’ and thus may better support classes that are unknown
at the time of detector training. As a result, an ensemble
of ours and detector-based SotA methods [23, 46] improves
the Flickr30K detector-based WSG result by over 7%, un-
derlining the benefits of our proposed GbS approach in sit-
uations where a detector is available.

To summarize, our key contributions are as follows:
(i) We propose a novel GbS approach for training DF-
WSG models (WSG without assuming a pre-trained detec-
tor) based on learning to separate randomly blended im-
ages conditioned on the corresponding texts at train time,
and applying the learned model on single images with ar-
bitrary text phrase conditioning at test time; (ii) we estab-
lish a new SotA for the DF-WSG task improving signifi-
cantly the previous best result by up to 8.5% over a range
of popular phrase-grounding benchmarks: Flickr30K, VG,
and Referlt; (iii) we provide an extensive ablation study
and examine the relative contribution of the components of
the GbS method; (iv) we obtain a new absolute SotA in
WSG on Flickr30K via an ensemble of our DF-WSG and
the best detector based WSG model, significantly improv-
ing the previous SotA result by over 7%.

2. Related Work

Joint analysis of natural images and text is a basic com-
ponent of many downstream tasks, such as image cap-
tioning [10, 30, 52, 65, 66, 74, 75, 82], text based image
retrieval[9, 35, 45, 46, 68, 76], visual question answering
[2, 3, 8, 20, 21, 72], text grounding[ 1, 6, 7, 11, 23, 56, 67],
and other general purpose multi-modal learning [26, 38, 39,

,57,62,63,64]. Below we review the text grounding and
source separation topics, as the most relevant to our work.
Fully supervised text grounding. In the fully supervised
grounding setting the training annotations include pairs of
phrases and their corresponding image bounding box loca-
tion. As in object detection, methods employing these de-
tailed annotation train a Region Proposal Network (RPN) to
produce image ROIs which are candidates for the grounding
target. In [56] joint visual-textual representation space is
used for matching the ROIs with the query phrase; instead,
[49] generate text captions for representing each ROI; fi-
nally [6] and [7] slightly modify the task and leverage addi-
tional "context’ phrases describing parts of image unrelated



to the query phrase, using them too for ROI matching.

Detector-based WSG. Most recent methods for WSG (re-
quiring only free-form text captions as image level annota-
tions) assume the availability of a pre-trained object detec-
tor, which performs the ROI localization. These methods
generally aim to create a joint visual-textual representation
space, thus transforming the grounding task into a retrieval
task: find the ROI whose embedding best matches the query
phrase embedding. In [11] cosine similarity between ROI
embeddings and image caption embedding is maximized di-
rectly; [23] generate negative text samples using linguistic
tools and employ them in a contrastive learning objective
between ROIs and the (positive) caption; [67] match the
query phrase to ROI labels produced by multiple pre-trained
object detectors; finally, in a growing body of literature
[9, 26, 38, 39, 40, 45, 46, 62, 63, 64, 82] transformers are
used for learning task-agnostic visual-textual representation
space where grounding is implemented via retrieval of de-
tector generated image ROIs closest to the query phrase.

Detector-Free WSG (DF-WSG). As opposed to detector-
based WSG methods, DF-WSG methods perform dense lo-
calization for a given query phrase, thus generating atten-
tion heatmaps as opposed to ranking ROIs. The “Point-
ing Game” accuracy measure [79] is commonly used for
DF-WSG evaluation. Lacking any localization information,
DF-WSG methods often define and optimize some auxil-
iary task on the weakly supervised data. While the auxil-
iary task is not identical to the grounding objective, opti-
mization of the task leads to the desired phrase grounding
results. In [71] joint text and image parsing is employed to
enforce structural similarities between the attended image
regions and the text parse-tree; [28] employ an attention
mechanism to find the common image region among sub-
sets of images which share a specific concept (noun) in the
caption; [78] employ an image & video captioning model
salience maps with respect to the query phrase. The current
DF-WSG SotA [1], maximizes the likelihood of the caption
words in a distribution of image features collected at multi-
ple network depths (scales), as well as optimizing the like-
lihood of image features in a distribution defined by words
in the learned (shared) embedding space.

Source-separation methods. Our approach to DF-WSG
can be considered as doing source-separation, as we sep-
arate a randomly generated blended image to its original
image sources (conditioned on the texts). Unconditioned
source-separation has been explored extensively using the

classical vision methods [4, 15, 27, 36, 37, 55]. Audio-
visual cues have been used for the separation of speakers
[5, 13, 47, 51], musical instruments [16, 19, 44, 80, 81],

and general sounds [18, 59, 73]. MixUp [77] proposed ran-
dom image blending for augmentation, and unconditioned
visual source separation has been examined in [17, 29, 48,
]. To the best of our knowledge, no previous
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work has employed (text conditioned) source separation as
an objective for learning to perform the text grounding task,
as well as for text driven attention in general.

3. Method

Let P, = (I;,T1) and P, = (I2,T3) be two random im-
age (Iy) + text (T'x) pairs from the DF-WSG task training
data. Assume w.l.o.g. that the images are of the same size
(II1] = |I2]) and let « be a random alpha-map of this size:
la| = || and o = {0 < o ; < 1|1 < 4,5 < |1]}. Let
the blended image I, = o - I; + (1 — «) - I be a per-pixel
convex combination of Iy and I, and let M(Z,T) = H
be the GbS model we would like to train for the DF-WSG
task, accepting an image Z and text 7 as corresponding in-
puts and returning an output heatmap H. This heatmap H
is predicting the probability of each pixel of the image Z to
be related to the text 7, in a sense that the pixel belongs to
the part of the image described by the text. Our idea is that
while the linkage between text parts of 77 and 75 and the
corresponding image regions of I; and I5 is not known (due
to the WSG setting), the association between the 73 and 75
components of the concatenated text 7, = 7T} + 75 and the
pixels of the blended image I; (in a generated ‘synthetic’
pair (I, Tp)) is given by construction and can be used as a
synthetic training signal for M. Following this intuition we
define our proposed GbS main objective (loss):

Lsep = MSEM(IL, Th), ) + MSE(M(I,T5),1 — o)

(1
where MSE(x,y) = 117 - 3, ; (4,7 — yi,;)° is the mean-

square-error. In this formulation, the model M is learning
to ‘separate’ the blended image [, conditioned on the text.
As mentioned above, any natural image can also be con-
sidered as an alpha blending of regions with different se-
mantic meaning (e.g. an overlay of object segments, etc).
According to this intuition, our goal is that following train-
ing, when provided with a random test image I; and some
corresponding query text Ty, computing M (I, T,) would
produce a heatmap H, such that I; could be considered as
a result of a alpha-blending with H, alpha-map between an
image I, corresponding entirely to 7;; and the complement
image I, 4 containing everything on I; that is unrelated to T};:

I, =H, I,+(1—-H,) I, 2)

In the following sections, we provide the architecture
specifics of the model we used in our experiments, as well
as several additional regularization losses, namely L4y,
Lyeg, and L;o;, which are introduced in sections 3.2, 3.3,
and 3.4 respectively, and are instrumental to make the pro-
posed construction work well in practice. Our overall loss
Leps s the weighted sum of all of these losses:

ACGbS = ﬁsep + Yadv Eadv + Yneg ﬁneg + Yi2t £i2t (3)

An extensive ablation study examining our design choices
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Figure 2. Detailed illustration of our model components and flow. Colored and numbered lines represent the flow of different inputs to the
respective loss terms. The blended image (black line) flow from £ to D on the way to the Lq4, loss is direct and does not pass through C.

is provided in section 4.4. The details of our GbS model are
illustrated in Figure 2.
3.1. Model and text conditioning architecture
Our GbS model M(Z,T) = H is comprised of an en-
coder £(Z) = F, atext conditioning module C(E, T) = C,
and a decoder D(C') = H returning the final output:
H=M(Z,T)=D(C(ED),T)) 4)
The encoder £(Z) = E is comprised of several (CNN)
blocks with (stride ) pooling layers between them. We set
E = [E',...,E"] to be a list of tensor outputs of n last
blocks ordered in such a way that E! is the output of the
last block (note that | E“*1| = r-| E?| due to pooling stride).
The text conditioning module C(E,7) = C is com-
prised of: (i) a text embedding model (e.g. BERT [12])
N(T) = [Wh, ..., W] returning a list of word embeddings
(in the context of the full text 7); followed by (ii) a pro-
jection module P*(W;) = W/, for each encoder £ block
i € [1,...,n], adapting the word embeddings to the space
of visual features of E’; followed by (iii) averaging over
the words W# = £ 3 W/ to obtain the full text 7~ embed-
ding (again per block); and finally followed by (iv) the text
attenuation module:
&)

A(EY, W) = exp (— ‘

where all operations are element-wise, W' is broadcasted to
all the spatial locations of the tensor E', and the attenuation
enhances locations of E' that are closer to the projected text
embedding for that block. The output of the text condition-
ing module is hence the per-block list: C' = [CY, ..., C"].

The decoder module D(C') = H converts the text atten-
uated image encoding C' into the final predicted heatmap
H. It is comprised of a series of ResNet [25] blocks
[D1,...,Dy] such that the first block Dy gets C; as the
input: O; = D1(C1), and similarly to U-Net [58] each sub-
sequent block receives a combination of the up-scaled pre-
vious output and the input: O; = D;(cat(C;, U, (0;-1))),

% Wz
E [l (W72

where cat is channel-wise concatenation and U, is the spa-
tial up-scaling by the factor of r. We set the number of
channels in O; same as in C; except for O,, = H which is
the final output of the decoder D and has a single channel.

3.2. Unconditioned adversary loss: L4,

Naturally, images blended with a random alpha-map «
differ from natural images and contain blending artifacts
that could in turn be leveraged by the model M in order
to produce the source separation. This is an unwanted be-
haviour that can increase the model’s overfit to training data
and decrease test performance. To reduce this effect we in-
troduce an adversarial loss reducing the model’s use of pa-
rameters that build upon these artifacts:

Eadv = MSE(D(g(Ib))’O5 ' ]]“7‘”) (6)

where 0.5 - 13 stands for a uniform heatmap with 0.5 in
all pixels indicating maximally uncertain prediction in case
no text conditioning was provided.

3.3. Negative texts loss: £,

We expect the model not only to produce correct « pre-
dictions matching the conditioning on the corresponding
texts 17 and 75, but also to learn to ‘reject’ conditioning
text that do not match. In other words, given a random un-
related text 7;,., we want the model to produce close to zero
prediction on the blended image I}, indicating that no pixel
represents this text. We therefore define the negative loss to
optimize for this requirement:

Lneg = MSE(D(C(E(Ib)anEQ))>O' ]llm) @)

3.4. Direct image-to-text alignment: £;5;

Our conditioning module C is using an attenuation strat-
egy that is based on the similarity between the visual fea-
tures {E’} returned by different depth blocks of the en-
coder £ and the text embedding {WZ} computed as ex-
plained in section 3.1. It is therefore likely that a stronger
alignment between the {W"} and the { E’} would result in



a more meaningful attenuation and in turn improved results.
In this light, and inspired by ideas from [1] and [57], we
added a direct image-to-text alignment loss L;2; between
(non-blended) batch images and their corresponding batch
texts. First we compute a similarity between each pair of
image #m and the text corresponding to (another or same)
image #k in the batch:

Zk.m = max [cos (Z [cosy (Wi, EL™Y) - EbY] WV,@)]

zy
o (8)
where cos denotes the cosine similarity and the cos; de-

notes its positive part, and E*Y indicates the feature vector
at spatial location (z,y) in the E?, tensor. Then we com-
pute the L;o; loss as:

Lio = Z CE [softmax (t;0; - Z,.) , k] + ©)
k

Z CE [softmax (tiat - Z..mm) , M| (10)

where Zj, . and Z. ,,, stand for the text #k row and image
#m column of the matrix Z respectively, ¢;2; is the softmax
temperature, and CE is the cross-entropy loss with respect
to the index of the ‘correct answer’. The ‘correct answer’ in
this case is the respective row or column index itself, simi-
larly to [57] we would like the text to best match its corre-
sponding image in the batch - symmetrically when looking
at the set of all batch images or all batch texts. Finally, direct
matching of the text to the image also produces a heatmap
predicting pixel correspondence to the query text. There-
fore, in addition to H returned by the decoder D (slightly
abusing notation, also referred to as Hagps below), we de-
fine an additional output #;2; from our model, which is the
attention map produced by the direct matching:

Hize (2,y) = max [Ujpn (cosy (Wi, E5™))] (1)

here U} gn| up-scales to spatial size of [ E™[. In our experi-
ments (Section 4) we found that \/Hagps - Hiot, namely the
per pixel geometric mean of Hgps and H,;ot, produces the
best result and in the following we consider this geometric
mean to be the main output of our GbS model M.

4. Experiments

4.1. Datasets

MS-COCO 2014 [41] consists of 82,783 training and
40, 504 validation images. Each image is associated with
five captions describing it.

Flickr30k Entities [56] is based on Flickr30k [76] and con-
tains 224 K phrases describing localized bounding boxes in
~ 31K images each described by 5 captions. For evalua-
tion, we use the same 1k images from the test split as in [1].
VisualGenome (VG) [33] has 77,398 train, 5000 valida-
tion, and 5000 test images. Each image comes with a set of
free-form text annotated bounding boxes.

ReferIt has 20,000 images and 99,535 segmented image
regions from the TAPR TC-12 [22] and the SAIAPR-12
datasets [7] respectively. Images also have an associated de-
scription for the entire image, and the image regions were
collected in a two-player game [31] with approximately
130K isolated entity descriptions. We use the same 9K
training, 1k validation, and 10K test images split as in [1].
Conceptual Captions 3M (CC3M) [60] has a total of
3,318, 333 training and 15, 840 validation images. The im-
age raw descriptions are automatically harvested from the
Alt-text HTML attribute associated with web images.

4.2. Implementation Details

All experiments were conducted on 4 Nvidia V100 GPU
in multi-node DDP (1 GPU per node). We used the
VGG [61] backbone from the torchvision [50] library, the
PNASNet [42] from the TIMM library [69], and BERT [12]
from the huggingface-transformers library [70]. As in [1],
the VGG and PNASNet are ImageNet pre-trained. All ex-
periments, unless otherwise noted, use the following config-
uration (found using MS-COCO validation set): (i) training
batch of size 8 (pairs of images and text); (ii) half of the
batch alpha maps are generated using Perlin noise [53] and
half using a combination of two random Gaussians (more
details in Sec. 4.4.3); (iii) the pre-trained BERT model is
frozen; (iv) the projection modules P! are a single fully
connected layer; (v) we use n = 2 layers for the decoder D
(Section 3.1); (vi) the decoder ResNet blocks D; have 512
output planes (1 for the final output block) and stride 1; (vii)
the pooling layers stride is r = 2; (viii) the losses weights
are: Yio¢ = 0.1, Yneg = 1, Yado = 1; (ix) the softmax tem-
perature is 7,9 = 10; (x) we use the ADAM optimizer [32]
and a linear LR schedule starting from LR = 0.0001 and
dividing it by 10 every 50K steps; (xi) we use 50% dropout
augmentation for the text, and random crop + 512 x 512
resize, color jitter, horizontal flip, and grayscale augmenta-
tions for the images.

The models where training for approximately 24 hours at
2.5 seconds per batch. Inference took 90 milliseconds per
image-query pair on a single Nvidia V100 GPU.

4.3. Results

We follow the experimental protocol of [!], using the
same data and splits for training, validation and testing.
Specifically, in our experiments we evaluate our approach
in two training setups: using either MS-COCO train split or
the VG train split for training respectively. In both cases, as
in [1], the resulting models are evaluated on the test splits
of Flickr30K, VG, and Referlt. Same as [1], we report the
pointing-game accuracy [79] as our performance estimate in
all of the experiments. Specifically, for the set of test ‘im-
age + query phrase’ pairs, we report the percent of pairs for
which the maximal point of the predicted heatmap for the
pair was inside the ground truth annotation bounding box.
Furthermore, we show the results of our method trained us-



Method Backbone

Training

Test Accuracy

VG  Flickr30K  Referlt
Baseline Random - 11.15 27.24 24.3
Baseline Center - 20.55 49.20 30.30
TD [78] Inception-2 VG 19.31 42.40 31.97
SSS [28] VGG VG 30.03 49.10 39.98
MG [1] VGG VG 48.76 60.08 60.01
GbS (ours) VGG VG 53.40 70.48 59.44
MG [1] PNASNet VG 55.16 67.69 61.89
GbS (ours) PNASNet VG 55.91 73.39 62.24
FCVC [14] VGG MS-COCO 14.03 29.03 33.52
VGLS [71] VGG MS-COCO 24.40 - -
MG [1] VGG MS-COCO 47.94 61.66 47.52
GbS (ours) VGG MS-COCO 52.00 72.60 56.10
MG [1] PNASNet MS-COCO 52.33 69.19 48.42
GbS (ours) PNASNet MS-COCO 52.70 74.50 49.26
GbS (ours) ensemble - MS-COCO 54.55 75.60 58.21

Table 1. Comparison with the state of the art DF-WSG methods evaluted using the “pointing game” accuracy on Visual Genome (VG),
Flickr30K, and Referlt. Our GbS method outperforms DF-WSG SotA when using corresponding backbones (VGG or PNASNet) by up to
10.4%. In red: best results with VGG; in blue: best results with PNASNet; in bold black: result of ensembling our GbS models.

Method H Overall | People Animals Vehicles Instruments Bodyparts Clothing Scene Other
Ours (VGG) 72.6 82.5 91.5 81.1 56.6 34.8 58.6 70.9 599
Ours (PNASNet) 74.5 83.6 89.3 92.1 83.3 53.2 50.1 713 66.7
Align2Ground [11] 71.0 - - - - - - - -

InfoGround (IG) [23] 76.74 83.2 89.7 87 69.7 45.1 74.5 80.6 67.3
12-in-1 [46] 76.4 85.7 82.7 95.5 77.4 333 54.6 80.7 70.6
IG + 12-in-1 81.1 87.1 90.4 95.5 74.2 61.5 74.0 79.9 735
Ours(VGG) + 1G 83.9 88.8 96.1 93.4 74.4 65.2 77.2 824 76.8
Ours (PNASNet) + IG 83.4 87.3 95.2 95.4 75.2 62.3 78.3 815 772
Ours (VGG) + 12-in-1 85.9 93.4 97.4 96.4 79.6 52.6 78.0 83.6 783
Ours (PNASNet) + 12-in-1 84.9 93.3 96.5 96.8 81.7 54.8 71.4 823 1789

Table 2. Detailed comparison with detector-based WSG methods [

models with the SotA InfoGround (IG) method [

ing the Conceptual Captions dataset setting a baseline for
future work.

The evaluation results of our GbS and of other DF-WSG
works (not using pre-trained detectors according to the def-
inition of DF-WSG) are provided in Table 1. As can be
seen, in both training regimes our GbS models significantly
outperform the previous best results on all benchmarks us-
ing the matching backbones with 4 — 10.9% absolute im-
provements for the lighter VGG backbone and 0.4 — 5.7%
absolute improvement for the much heavier PNASNet back-
bone. More specifically, we observe significant over 5.7%
gains on Flickr30K in all training regimes, over 7% gains
in ReferIt under MS-COCO training, and over 4% gains on

] on Flickr30K. The last two lines are an ensemble of our GbS

]. In blue - best single model result, in bold black - best overall result. 12-in-1 [46]
pointing accuracy results computed using official code. Align2Ground [

] did not provide detailed results and did not release their code.

VG in all training regimes using he VGG backbone. More-
over, when training using a large scale CC3M dataset, GbS
(VGG backbone) attains 81.32% Flickr30K grounding ac-
curacy, which is 4.58% higher than the best result of even
the detector based methods [23, 46], notably of that of [46]
which was trained using a larger set of 4.4 million samples.

Interestingly, we also found that our proposed GbS ap-
proach is in fact complementary to the detector based WSG
methods and can be effectively used to boost their perfor-
mance. Any detector based method output can be con-
verted to a heatmap by simple assignment of the bounding
box scores to pixels of the bounding box (e.g. taking max
for overlaps). As we show in Table 2, a simple geomet-
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Figure 3. (Top) GbS heatmaps; (Bottom) IG [23] predicted boxes; (Middle text) grounding queries. We show cases where GbS handles
phrases which are less familiar or ambiguous to the detector. On the right, where the query is ambiguous, both methods failed.

Lyeg  Ladv ‘ Pointing Accuracy

- - 63.22
v - 66.8
- v 66.9
v v 72.6

Table 3. The effect of the regularization losses Lady and Lyeg.

ric average between the heatmap produced by our model
and the heatmap resulting from the best performing detector
based methods significantly boosts the pointing game accu-
racy of the latter indicating our model has learned to pro-
duce complementary predictions (e.g. for object categories
less supported by the detector, such as some of the instru-
ments and body parts in Table 2) boosting the combined
performance by > 7% even over the detector-based SotA
WSG approaches [11, 23, 46]. Additionally, we include a
comparison to an ensemble of the two SotA detector-based
methods InfoGround (IG) [23] and 12-in-1 [46] without our
GbS model CIG + 12-in-1’ line in the table). As can be
seen, an ensemble of our GbS model with any of these
detector-based methods performs significantly better than
an ensemble of the detector-based models between them-
selves (with the gain of 2.8% and 4.8% respectively). This
shows that the gains obtained using an ensemble with GbS
are not simply due to a combination of models, but rather
likely stem from the GbS model being truly complemen-
tary to the detector-based methods. Some qualitative exam-
ples illustrating situations when not relying on the (more
constrained) vocabulary of a pre-trained detector helps the
grounding task are provided in Figure 3.

4.4. Ablations

We used the Flickr30K DF-WSG benchmark [56] with
the ‘pointing game’ accuracy measure [79] for analyzing
the relative contribution and importance of the different
components of our GbS approach. All the ablation studies
were carried out on (the lighter) VGG backbone trained on
MS-COCO, and using our complete GbS approach with all
of its components except the ones being examined in each
respective ablation sub-section below.

Loss Pointing Accuracy
Lo  GbS losses ‘ Hiot Haps Mean
v - 62.8 - -
- v - 69.5 -
v v 682 671 726

Table 4. Different combinations of the direct image-to-text match-
ing loss, GbS losses, and heatmap generation schemes. Here *GbS
losses’ refers to our combination of Lsep, Ladv, and Lyeg.

4.4.1 Regularization losses L4, and L,

Table 3 evaluates the relative effect of our main regulariza-
tion losses, namely: (i) the unconditioned adversarial loss
L o4, responsible for suppressing the model parameters cap-
italizing on the artifacts of the synthetic blending we use for
training our GbS models; and (ii) the negative text 10ss Ly,cq
that encourages empty heatmap output when text is unre-
lated to the image. As we can see, each of these regulariza-
tion losses adds above 3.5% to our GbS model performance
affirming the benefits of their function. Moreover, jointly
these two losses add more than 9% to the overall accuracy.

4.4.2 Image-to-text loss L;o;

Table 4 evaluates the benefit of the direct image-to-text
matching loss L;o; that is intended to improve the text and
image features distributions alignment in order to facilitate
better output of the conditioning module C, as well as of an
additional direct image-to-text attention output H;o; result-
ing in the process of L;9; computation. As the first row of
Table 4 shows, training using only the L;2; loss and using
its corresponding output H;2; (the only one available in this
case) for grounding at test time is not sufficient for obtaining
high performance. Significantly better accuracy (by almost
7%) is obtained via training using the Hgps output and the
GbS losses alone (without £;5;, second row). This indicates
that the GbS losses contribute the most to the overall best re-
sult of 72.6% attained when using all the losses and outputs
jointly (third row). We believe that the reason for this might
be that the GbS losses employ a (synthetic) structured train-
ing signal (learning to predict localized masked regions of
the blended image conditioned on the text), while £;o; loss
capitalizes on unstructured (bag-of-words like) contrastive



(in the batch) text to image matching.

4.4.3 Blending alpha-map generation schemes

Perlin Gaussian Circle Scale&Shift Pointing Acc.
100% 0% 0% 0% 68.37
50% 50% 0% 0% 72.6
50% 0% 50% 0% 66.9
50% 0% 0% 50% 68.8
0% 100% 0% 0% 70.7
0% 50% 50% 0% 65.8
0% 50% 0% 50% 68.0
0% 0% 100% 0% 65.8
0% 0% 50% 50% 69.6
0% 0% 0% 100% 66.0

Table 5. Comparison of different variants of blending alpha-map
generation including their mix (in % of the batch size).

Table 5 evaluates some choices for the blending alpha-
map («) generation scheme. Specifically, we examine the
following alpha-map generators and their combinations (in
portions of the batch): (i) the Perlin engine [53]; (ii) nor-
malized pixel-wise combination of two random Gaussians:
G (@, 9|1 01] / 5,1 2 G (@, 9)ly, o). with gy, and o
chosen at random and G being a Gaussian distribution; (iii)
the Circle; and (iv) the Scale&Shift. The Circle refers to
a binary circular mask (with randomly generated center
and radius), and the Scale&Shift refers to a random scale
and random relative shift blending of one of the images of
the blended pair into the other image of the pair. We ob-
served that increasing diversity via mixing different alpha-
map generation schemes in most cases leads to increased
performance compared to each of the schemes alone. Mix-
ing the Perlin and Gaussian schemes attains the best result.

4.4.4 Language model ablation

In Table 6 we evaluate the effect of the choice of the lan-
guage model (ELMO [54] or BERT [12]) used for the text
embedding. Notably, even with the ELMO text embedding
our proposed GbS approach retains significant performance
gains (between 1.1% and 6.3%) above the results of [1] for
the corresponding VGG backbone (winning in all cases ex-
cept when testing on Referlt after training on VG).

Language Traini Pointing Accuracy
Model FIME VG Flickr30K  Referlt
ELMO VG 53.65 66.43 52.90
BERT VG 53.40 70.48 59.44
ELMO MS-COCO 49.03 67.9 49.37
BERT MS-COCO  52.00 72.60 56.10

Table 6. Comparison of ELMO vs. BERT text encoders in our
GbS model using the VGG backbone.

Condition Method | Pointing Accuracy
Distance 72.60
Attention 69.70
Projecton 69.54

Dist2Atten 69.43
Cosine 65.57

Table 7. Comparison of conditioning attenuation variants.

4.4.5 Attenuation for the text conditioning in C

In Table 7 we evaluate several options for the type of the

attenuation operation used in the conditioning module C:

1. Distance (described by eq. (5)) attains the best result.

2. Alternatively, we also test the projection attenuation:
A(E',W") = cosy (E",W") - E". (12)

3. The attention attenuation via using a self-attention block

accepting the concatenated E' and W (replicated to each

pixel of E%) and outputting a tensor of the same size as E°.

4+45. Two ’scalar’ attenuations that return a single channel

tensors outputs, dist2Atten:

A(E", W) = exp(— cos (E*,W")) (13)
and cosine:
A(E", W) = cosy (E*,W") (14)
5. Conclusion

We propose Grounding by Separation (GbS) - a compo-
sitional approach for training text grounding models with
weak (text only) supervision and without reliance on pre-
trained detectors, as well as an architecture and a set of im-
portant regularization losses enabling our GbS approach to
achieve a new SotA in Detector-Free WSG (DF-WSG). In
addition, we show that our approach is complementary to
the detector-based WSG by demonstrating significant im-
provement of the detector-based WSG accuracy SotA on
Flickr30K when using our GbS model in a naive combina-
tion with a detector-based approach. Finally, in a compre-
hensive ablation study we clearly show the contributions of
the novel GbS ideas to its success.

Interesting future work directions, which are beyond the
scope of this work, include: adversarial optimization for
the blending-alpha via back-propagation; recurrent gener-
ation of the blending alpha by applying the trained model
to non-blended batch images and conditioning on random
parts of associated text; exploring vision transformer back-
bones; and applications to multi-modal grounding outside
the text domain (e.g. grounding of sound in still images).
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