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Table 1: Supplementary Material Overview

A. Dataset Details
We evaluate the performance of our approach using

four standard video datasets, namely ActivityNet-v1.3 [2],
FCVID [4], Mini-Sports1M [5] and Kinetics-Sounds [1].
Below we provide more details on each of the dataset.
ActivityNet. We use the v1.3 split which consists of more
than 648 hours of untrimmed videos from a total of 20K
videos. Specifically, this dataset has 10,024 videos for train-
ing, 4926 videos for validation and 5044 videos for testing
with an average duration of 117 seconds. It contains 200
different daily activities such as: walking the dog, long
jump, and vacuuming floor. As in literature, we use the
training videos to train our network, and the validation set
for testing as labels in the testing set are withheld by the
authors. The dataset is publicly available to download at
http://activity-net.org/download.html.
FCVID. Fudan-Columbia Video Dataset (FCVID) contains
total 91,223 Web videos annotated manually according to
239 categories (45,611 videos for training and 45,612 videos
for testing). The categories cover a wide range of topics
like social events, procedural events, objects, scenes, etc.
that form in a hierarchy of 11 high-level groups (183 classes
are related to events and 56 are objects, scenes, etc.). The
total duration of FCVID is 4,232 hours with an average video
duration of 167 seconds. The dataset is available to download
at http://bigvid.fudan.edu.cn/FCVID/.
Mini-Sports1M. Mini-Sports1M is a subset of Sports-

1M [5] dataset with 1.1M videos of 487 different fine-grained
sports. It is assembled by [3] using videos of length 2-5 mins,
and randomly sample 30 videos for each class for training,
and 10 videos for each class for testing. The classes are ar-
ranged in a manually-curated taxonomy that contains internal
nodes such as Aquatic Sports, Team Sports, Winter Sports,
Ball Sports, etc, and generally becomes fine-grained by the
leaf level. We obtain the training and testing splits from
the authors of [3] to perform our experiments. Both train-
ing and testing videos in this dataset are untrimmed. This
dataset is available to download at https://github.
com/gtoderici/sports-1m-dataset.

Kinetics-Sounds. Kinetics-Sounds (assembled by [1]) is a
subset of Kinetics and consists of 22,521 videos for training
and 1,532 videos testing across 31 action classes. The origi-
nal subset contains 34 classes, which have been chosen to be
potentially manifested visually and aurally, such as playing
various instruments (guitar, violin, xylophone, etc.), using
tools (lawn mowing, shovelling snow, etc.), as well as per-
forming miscellaneous actions (tap dancing, bowling, laugh-
ing, singing, blowing nose, etc.). Since 3 classes were re-
moved from the original Kinetics dataset, we use the remain-
ing 31 classes in our experiments, as in [3]. Although this
dataset is fairly clean by construction, it still contains consid-
erable noise and many videos contain sound tracks that are
completely unrelated to the visual content (e.g. Doing fenc-
ing in Figure 3.(a) of the main paper) which makes it suitable
for our approach to adaptively select right modalities condi-
tioned on the input. The original Kinetics dataset is publicly
available to download at https://deepmind.com/
research/open-source/kinetics and the classes
for Kinetics-Sounds can be obtained from [3].

B. Implementation Details

For our experiments, we use 12 NVIDIA Tesla V100
GPUs for the RGB + Audio experiments and 18 GPUs for
both RGB + Flow and RGB + Flow + Audio experiments.
All our models were implemented and trained via PyTorch.



Network. For non-audio modality, we add temporal max-
pooling layers (kernel size 3, stride 2) to reduce computa-
tions. In recognition network, we use TSN-like ResNet-50
network [8] with three temporal max-pooling layers which
are located at the beginning of stage 2, 3 and 4 of ResNet-50
(there are 4 stages in ResNet-50), i.e., the third, forth and
fifth locations of reducing spatial resolution in the network.
On the other hand, we add two temporal max-pooling layers
to the MobileNetV2 used in the policy network for non-audio
modality since the number input frames for policy network
is fewer compared to the recognition network.

Input. We first use FFMPEG to extract RGB frames and
Audio from a video. While decoding a video into RGB
frames, the shorter side of the RGB frames is resized to
256 while keeping the aspect ratio. We use the resized
frames to compute optical flow via TV-L1 algorithm and
bound the flow range to [-20, 20]. We convert the audio to
single-channel and resample it at 24kHz. During training,
we divide a video into C equal-length regions (C = 5 in
our experiments). For each region, we randomly pick 32
consecutive frames and uniformly subsample 8 frames as a
RGB segment, i.e., the temporal stride between frames is 4.
For the Audio data, we take a 1.28s-length window that is
center-aligned to the RGB frames and then we use short-time
Fourier transform to convert the audio into a log-spectrogram
of window length 10ms, hop length 5ms with 256 frequency
bins [6]. For the Flow data, at each RGB frame location, we
stack horizontal and vertical flow of 5 consecutive frames
interleavedly to form the input. Moreover, for the frame
difference used in the multi-modal policy network, we follow
the same practice as in optical flow, and stack 5 consecutive
frame difference images to form the input [8]. On the other
hand, C is 10 during testing as we use 10 video segments.

Training. We use a batch size of 72 with synchronized batch
normalization in all our experiments, The data augmenta-
tions for the RGB and Flow modalities are based on the
practices in [10]. We first randomly resize the shorter side of
an image to a range of [256, 320) while keeping aspect ratio
and then randomly crop a 224× 224 region and normalize
it with the ImageNet’s mean and standard deviation to form
the input (8× 224× 224). For the Audio modality, we sim-
ply take the 256× 256 spectrogram as the input. The same
data augmentations are used in the policy network while the
data of the non-audio modality is further downsampled in
both temporal and spatial dimension (4× 160× 160). The
training time depends on the size of datasets and the task.
E.g., for the RGB + Audio task, it takes about 12 hours for
Kinetics-Sound and 16 hours for ActivityNet.

Testing. During testing, we uniformly sample 10 video
segments from a video. For RGB and Flow modalities, we
resize the shorter side of an image to 256, and then crop a
center 224× 224 region for evaluation.

Method Acc. (%) GFLOPs

RGB 82.85 141.36
Flow 75.73 163.39

RGBDiff 80.10 179.12
Weighted Fusion (RGB + Flow) 83.47 304.75

Weighted Fusion (RGB + RGBDiff) 83.30 320.48

Table 2: Comparison between Optical Flow and RGB Differ-
ence on Kinetics-Sounds. RGBDiff as an input modality is very
competitive with optical flow in both unimodal and joint learning.

C. Comparison with More Fusion Baselines
Table 7 of the main paper shows that AdaMML outper-

forms five different fusion methods with 47%−55% savings
in GFLOPs on Kinetics-Sounds. We additionally compare
with two mid-level fusion strategies (Unilateral and Bilateral
connections as in [11]) and AdaMML still outperforms both
by 1.6% and 1.2% in accuracy while requiring 55.9% and
56.8% less GFLOPs in RGB+Flow on Kinetics-Sounds. We
also compare with one context gating baseline (collabora-
tive experts where each modality is treated as an expert [7])
and AdaMML outperforms it by 4.87% in RGB+Flow on
Kinetics-Sounds and 2.48% in RGB+Audio on ActivityNet.
We also test gradient-blending [9] using author’s released
codes; however, it diverged during training on both Kinetics-
Sounds and ActivityNet datasets.

D. Discussion on RGB Difference
As described in Section 4 of the main paper, we utilize

RGB frame difference as a proxy to optical flow in our policy
network and compute flow when needed since computing
flow is very expensive. Here we compare RGBDiff and flow
in terms of unimodal and weighted fusion (joint learning)
when combined with RGB performance to further verify the
effectiveness of RGBDiff on Kinetics-Sounds. Table 2 shows
that RGBDiff outperforms Flow in unimodal performance
(75.73% vs 80.10%) whereas both Flow and and RGBDiff
(when combined with RGB) performs very similar (83.47
vs 83.30) on Kinetics-Sounds. This shows that RGBDiff as
an input modality is also quite effective both in unimodal
and joint learning performance and hence can be used as a
proxy in the policy network for predicting the on-demand
flow computation during test time.

E. Qualitative Results
Figure 1 shows the selected modalities using our approach

on different cases. As seen from Figure 1.(a), our approach
selects relevant RGB and audio for only first two segments
as both modalities become irrelevant for last two segments
as girls are discussing instead of cheerleading. Similarly, in
Figure 1.(b), AdaMML is able to select RGB for only one
segment that is more informative of the action and selects
the entire audio stream as the action can be easily recognized
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with audio (Playing Harmonica). Figure 1.(c) and (d) shows
two more examples of RGB + Flow and RGB + Flow +
Audio experiments respectively, where our approach selects
the right modalities to use per segment (e.g., in Figure 1.(d),
it mainly focuses on audio while selecting RGB and flow
for only two segments) for correctly classifying the videos
while taking efficiency into account.

F. Runtime Analysis
We compute runtime using an environment with PyTorch

1.2, CUDA 10.2, and a single NVIDIA Tesla V100 (32GB)
GPU as our testbed. Our method still has advantages on ac-
tual inference speed. For instance, AdaMML delivers 1.96×
(11.6 vs 5.9 videos/sec) and 1.42× (13.1 vs 9.22 videos/sec)
speed up over the weighted fusion baseline that uses all the
modalities irrespective of the input, on Kinetics-Sounds and
ActivityNet datasets respectively.
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Figure 1: More qualitative examples showing effectiveness
of AdaMML in selecting right modalities per video segment
(marked by green borders). Overall, we observe that our ap-
proach focuses on the right modalities to use per segment for cor-
rectly classifying the videos while taking efficiency into account.
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