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Abstract. Supervised deep learning methods are enjoying enormous
success in many practical applications of computer vision and have the
potential to revolutionize robotics. However, the marked performance
degradation to biases and imbalanced data questions the reliability of
these methods. In this work we address these questions from the perspec-
tive of dataset imbalance resulting out of severe under-representation of
annotated training data for certain classes and its effect on both deep
classification and generation methods. We introduce a joint dataset re-
pairment strategy by combining a neural network classifier with Genera-
tive Adversarial Networks (GAN) that makes up for the deficit of train-
ing examples from the under-representated class by producing additional
training examples. We show that the combined training helps to improve
the robustness of both the classifier and the GAN against severe class
imbalance. We show the effectiveness of our proposed approach on three
very different datasets with different degrees of imbalance in them. The
code is available at https://github.com/AadSah/ImbalanceCycleGAN.

1 Introduction

Deep neural networks (DNN) and large-scale datasets have been instrumental
behind the remarkable progress in computer vision research. The data-driven fea-
ture and classifier learning enabled Convolutional Neural Networks (CNNs) to
achieve superior performance than traditional machine learning methods. How-
ever, the over-reliance on data has brought with it new problems. One of them is
the problem of becoming too adapted to the dataset by essentially memorizing
all its idiosyncrasies [32,42]. Due to the presence of massive number of learnable
parameters, most DNNs require huge amount of annotated examples for each
class. This is resource consuming, expensive and often impractical too in cases
where recognition involves rare classes. Such a situation is not rare where large
number of annotated examples for one class and only a few for the other are
available resulting in an imbalanced dataset.
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Fig. 1. We propose a joint generation and classification network to tackle severe dataset
imbalance in classification scenario. The framework employs a Cycle-consistent GAN to
generate new training examples from existing ones and feeds both to the classifier. The
GAN and the classifier are trained jointly in an alternating fashion. Our model improves
the classification performance especially when the dataset is highly imbalanced and
the performance of the GAN is either at par with or experiences minor deterioration
compared to the case when the classifier is not trained jointly.

Class imbalance is a classic problem in machine learning and is known to
have detrimental effect [5,12,19]. Classifiers trained traditionally minimizes the
average error across all training examples. Such a strategy often results in fitting
to the majority class (i.e., the class with large number of annotated training
examples) only. Simply by virtue of their numbers, fitting to the majority class
reduces the overall training error than fitting to the minority class.

Traditionally, dataset imbalance mitigation methods have tried to put all
classes in the level playing field by focusing on to take away the number advan-
tage enjoyed by the majority class. This includes oversampling minority popu-
lation [6] or undersampling the majority population [8,12], providing more im-
portance to errors from the minority class while training [49] or adjusting the
predicted class probabilities during inference according to the prior class proba-
bilities [34] etc. However, these approaches are limited to the data at hand in the
sense that these can not generate additional unseen data that can help increase
the much needed diversity for unbiased training. In this paper, we advocate for
a generative approach to address dataset imbalance. A Generative Adversarial
Network (GAN) is used to transform majority class examples to minority class
and vice-versa. Starting from an imbalanced dataset, this generates training ex-
amples that are not only much broader and diverse in nature but also balanced
in terms of the number of examples from the two different classes.

Our proposed approach explores a Cycle-consistent GAN or simply cycle-
GAN [50] that is recently proposed to translate image from one domain (source)
to another domain (target) (see Fig. 1). In addition to traditional generator and
discriminator losses during training, a cycle-GAN employs a cycle-consistency
loss that encourages the learned translations to be “cycle consistent”, i.e., if an
image is translated from a source to a target domain and then it is translated



Mitigating Dataset Imbalance via Joint Generation and Classification 3

back to the target domain again, original image and the doubly translated image
should be same. We learn a joint architecture by extending cycle-GAN that feeds
a classifier with images translated from a source class to a target class where the
target class is also the minority class in the imbalanced dataset. Instead of using
the cycle-GAN as only a component of the classification pipeline, we employ a
joint training strategy that first trains the classifier using images generated by
the cycle-GAN and then trains the cycle-GAN by back-propagating the classifier
loss through it. The loss from the classifier acts as a multi-task supervision for
the cycle-GAN in addition to the cycle-consistency and the traditional GAN loss.
After few such iterations of alternate classifier and GAN training, the GAN learns
to generate appropriate images for training a balanced classifier. Our key insight
is that one can use a GAN to alleviate dataset imbalance effect on classifier and
at the same time the gradients from the classifier loss can be propagated back
to the GAN, to mitigate the same for the GAN.

We evaluate our proposed approach on three different datasets. The first one
is the CelebA dataset [26] which is a largescale face dataset created from face
images of celebrities, the second one is the Horse2Zebra dataset [50] which is
a collection of natural images of horses and zebras downloaded from the inter-
net and the third one is CUB-200-2011 dataset [43] consisting of fine-grained
images of 200 bird species. Specifically, we demonstrate that in highly imbal-
anced scenarios, both classifier and the GAN achieves superior performances
than traditional imbalance mitigation approaches.

2 Related Works

Class imbalance in machine learning has been studied long [19]. However, in the
midst of present data revolution, the problem has become ever so important.
While images corresponding to some concepts or classes are available in plenty
and easy to annotate, examples corresponding to many concepts are either rare or
might require expert annotators. As a result, many real world datasets are highly
imbalanced. MS-COCO [22], SUN database [46], DeepFashion [25], Places [48],
iNaturalist [16] etc. are all examples of datasets where the number of images in
the most common class and the number of images in the least common class are
hugely different. The community has commonly adopted two different kinds of
approaches to address class imbalance: i) dataset level methods and ii) classifier
or algorithmic level methods. A multidimensional taxonomy and categorization
of the class imbalance problems can be obtained in the review papers [5,14].

The dataset level approaches consist of modification of imbalanced data in
order to provide a balanced distribution with the aim that no change at the al-
gorithm level is necessary and standard training algorithms would work. These
are based on sampling either the majority or the minority classes differently. Ba-
sic random oversampling [6,9,45] involves replicating randomly selected training
examples from the minority class such that the total number of minority and ma-
jority class examples that goes to train the classifier is same. However the same
mechanism can be used to achieve varying degrees of class distribution balance
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by varying the amount of replication. Oversampling methods are simple and
effective, however there are evidences that these can lead to overfitting [6,44].
To this end, various adaptive and informative oversampling methods have been
proposed. SMOTE [6] creates synthetic examples of the minority class as a con-
vex combination of existing examples and their nearest neighbors. Borderline-
SMOTE [13] extends SMOTE by choosing more training examples near the class
boundaries. Authors in [4] used a modified condensed nearest neighbor rule [41]
to sample examples such that all minimally distanced nearest neighbor pairs are
of same class and learned a classifier on these samples only. In CNNs, Shen et al.
[38] used a class-aware sampling strategy where the authors first sample a class
and then sample an image from that class to form minibatches that are uniform
with respect to the classes.

Another variant of sampling is undersampling where training examples are
removed randomly from the majority classes until the desired balance in the cu-
rated dataset is achieved. This approach, though counter-intuitive works better
than oversampling in some situations [8]. One obvious disadvantage of under-
sampling is that discarding examples may cause the classifier to miss out on im-
portant variabilities in the dataset. EasyEnsemble and BalanceCascade [24] are
two variants of informed undersampling that addresses this issue. EasyEnsem-
ble creates an ensemble of classifiers by independently sampling several subsets
from the minority class while BalanceCascade develops the ensemble classifier by
systematically selecting the majority class samples. The one-sided selection [20]
approach discards redundant examples especially close to the boundary to get
a more informed reduced sample set than random undersampling of majority
class. Though sampling based methods change the data distribution to be more
balanced, they hardly change the data itself. Our proposed method on the other
hand is not only able to change the data distribution to make it more balanced,
but also adds variability as additional data is generated in the process.

Among the approaches that modify the learning algorithm without changing
the dataset distribution, Zhou et al. [49] weigh misclassification of the minority
class examples more than the majority class examples during training. A naive
approach [21] is to weigh the predicted probabilities of different classes during
inference according to the prior probability of occurrences of these classes in the
training set. Recently Cui et al., [7] proposed a class balanced loss depending on
the “effective” number of training examples per class based on the fact that the
additional benefit diminishes with increasing number of examples. This gener-
alizes the class specific loss balancing based on frequency of the samples [49] to
their effective frequencies.

GAN [11] and its variants use a minimax game to model high dimensional
distributions of visual data enabling them to be used for data augmentation [33]
as well as for generating new images [2]. However, training with GAN generated
minority class samples can lead to boundary distortion [36] resulting in per-
formance drop for the majority class. Mullick et al., [30] proposed to generate
minority class samples by convexly combining existing samples in an adversarial
setting by fooling both the discriminator as well as the classifier. Our proposed
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approach, on the other hand, generates additional minority samples from images
belonging to the majority class. In contrast to prior works that focus on only
perturbing the whole image to generate a slightly different version of it, we use
a translational generative model (Cycle-GAN) to perturb the content (object of
interest) without changing the context much. Our conjecture is: the classifier gets
two different objects in the same context which would likely help the classifier to
focus more on the object of interest rather than on the context for the disrcimi-
native task. Training classifiers with such image pairs where the two objects are
in the same common context not only alleviates the dataset imbalance problem
but also creates a more robust classifier by learning object features rather than
focusing on the context.

3 Approach

An overview of the training procedure is presented in Fig. (2). The goal is to
learn a generator to translate images from majority class to images of minority
class so that the generated images make the dataset balanced for training. We
denote the majority class as A and minority class as B. In Fig. (2), horse images
are assumed to be the majority class while the zebra images are assumed to be
the minority class.

The proposed system uses a generator (GA→B) to translate a majority ex-
ample (a) in the scene to an example (bgen) belonging to the minority class.
Following the cycle-GAN philosophy, another generator (GB→A) will translate
bgen to a majority class example (acyc). Since acyc is generated from the trans-
lated image bgen which, in turn, is generated from the original majority class
example a, acyc is known as the cyclic image of a. The generated minority class
image (GA→B(a)) along with a real minority class image (b) constitute the GAN
loss (LGAN ) while the real majority class image (a) and the cyclic image (acyc)
will constitute the cycle-consistency loss (Lcyc) as,

LGAN (GA→B , DB , A,B) = −Eb∼pB(b)

[
logDB(b)

]
− Ea∼pA(a)

[
log

(
1−DB

(
GA→B(a)

))]
Lcyc(A) = Ea∼pA(a)

[
||GB→A

(
GA→B(a)

)
− a||1

]
(1)

where, DB denotes the discriminator. Minimizing the GAN loss without the
cycle-consistency constraint, can encourage the generator to map source domain
images to a random permutation of the target domain images [50] as the mapped
images still produce an identical target distribution. This is, especially, true with
imbalanced dataset where the network capacity can be too large with regard
to the size of the dataset, facilitating the generator to memorize the target
domain. Cycle-consistency loss addresses this by putting further constraints on
the generator by asking it to map back to the original domain if source-to-target



6 A. Sahoo, A. Singh, R. Panda, R. Feris and A. Das

Original Zebra

Original Horse

Generated Horse

Generated Zebra

Reconstructed Horse

Reconstructed Zebra

Horse/
Zebra

Fig. 2. Approach overview. We train a CNN to predict the presence of either horse or
zebra in presence of high imbalance between the number of images of horses and zebras
in the training data. In addition to images from the imbalanced dataset, the classifier
uses images translated by cycle-GAN for training. What originally is a minority class
becomes a majority class when translated. However, due to the obvious difference in
quality between the generated and the real images they are weighed differently when
used in training. The figure also shows the different losses along with the constituents
contributing to them. Note that the identity loss for the cycle-GAN is not shown to
make it less cluttered. The framework is trained by either keeping the GAN frozen
throughout or alternatingly training the classifier and the GAN for a few epochs.

and target-to-source generators are composed sequentially. Following the original
cycle-GAN formulation [50], the cycle-consistency loss in this work, is measured
as the `1 distance between an image and its mapped back version.

A similar procedure provides the corresponding losses (LGAN (GB→A, DA, B,A)
and Lcyc(B)) for the scenario when we want to convert a visual scene containing
majority class objects to a scene containing minority class objects.

LGAN (GB→A, DA, B,A) = −Ea∼pA(a)

[
logDA(a)

]
− Eb∼pB(b)

[
log

(
1−DA

(
GB→A(b)

))]
Lcyc(B) = Eb∼pB(b)

[
||GA→B

(
GB→A(b)

)
− b||1

]
(2)

where, DA denotes the discriminator.
In addition, following [40], an identity loss (Lide(GA→B , GB→A)) is used that

encourages the generators to produce an identity image when a real sample of
the target domain is passed through them.

Lide(GA→B , GB→A) = Eb∼pB(b)

[
||GA→B(b)− b||1

]
+

Ea∼pA(a)

[
||GB→A(a)− a||1

]
(3)



Mitigating Dataset Imbalance via Joint Generation and Classification 7

Without this loss, translated images often come with additional tint. This is,
especially, problematic for the proposed framework as systematically tinted im-
ages at training time can confuse the classifier to predict almost randomly during
inference where images are without such systematic tints.

The real (but abundant) and the translated (but originally rare) images will
constitute a more balanced training set for the classifier z : A ∪ B → [0, 1],
which provides a high value (close to 1) for a minority class image. Unlike the
traditional classifiers, our binary cross entropy loss function comprises of losses
from four different types of images namely, - Real images from minority class
(b), Generated samples of the minority class (bgen) and the same corresponding
to the majority class (a and agen respectively). As the classifier provides the
probability of an image to belong to the minority class, the loss coming from the
minority class images is given by,

LB
cls =−Eb∼pB(b)

[
log z(b)

]
−Ea∼pA(a)

[
log z(GA→B(a))

]
(4)

Similarly the loss coming from the majority class images is given by,

LA
cls =−Ea∼pA(a)

[
log(1− z(a))

]
−Eb∼pB(b)

[
log(1− z(GB→A(b)))

]
(5)

The combined loss function for the classifier thus becomes,

Lcls = LB
cls +

1

γ
LA
cls (6)

where, γ is the imbalance ratio that determines the relative weight of the loss
components coming from the minority and the majority classes. γ is defined to
be the ratio of the number of training examples in the majority class to the
same in the minority class. For a highly imbalanced scenario (γ>>1), the loss
formulation penalizes the classifier much more when it misclassifies a minority
class real image than when it misclassifies the same from the majority class. This
is to encourage the classifier to be free from the bias induced by the majority
class. The loss also penalizes the misclassification of images generated from the
majority class more than the same generated from the minority class to help
the classifier learn from the more diverse style captured by the GAN from the
originally majority class images.

We propose two modes of training the proposed system - 1) Augmented
(AUG) Mode 2) Alternate (ALT) Mode. For both the modes, the cycle-
GAN is first trained on the imbalanced dataset. In augmented mode, the trained
cycle-GAN is used throughout and acts as additional data generator for the
classifier. In this mode, only the classifier loss Lcls (ref. Eqn. (4)) is minimized.
In alternate mode, we alternately train either the cycle-GAN or the classifier
for a few epochs keeping the other fixed. The GAN is warm-started similar
to the augmented mode of training while the classifier is trained from scratch.
During the training of the classifier only the classifier loss Lcls is backpropagated
to change the classifier weights and the GAN acts as additional data generator
similar to the augmented mode. However, when the GAN is trained, the classifier
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acts as an additional teacher. The full objective in this case is given by,

L = LGAN (GA→B , DB , A,B) + βLcyc(A)+

LGAN (GB→A, DA, B,A) + βLcyc(B)+

αLide(GA→B , GB→A) + LA
cls + LB

cls (7)

where α and β are hyperparameters weighing the relative importance of the
individual loss terms. We have also experimented with end-to-end training of the
whole system which works good in a balanced data regime, but the performance
is not satisfactory when there is high imbalance in data. This may be due to
the fact that the naturally less stable GAN training [28,35] gets aggravated in
presence of high imbalance in data. For example, with very few zebra and large
number of horses, the cycle-GAN produces mostly the same image as the source
horse with only a few faint stripes of zebra at different places of the image.
Getting good quality input at the beginning is critical for a convnet classifier as
the deficits due to the “noisy” inputs at the beginning of the learning process of
the classifier can not be overcome later [1].

4 Experiments

The proposed approach is evaluated on three publicly available datasets namely
CelebA [26], CUB-200-2011 [43] and Horse2Zebra [50]. Sections 4.1, 4.2 and 4.3
respectively provide the experimental details and evaluation results on them.

We evaluate the proposed approach in terms the improvement of performance
of the classifier as well as that of the cycle-GAN in presence of high class imbal-
ance in the training data. The performance of the classifier is measured in terms
of the F1 score of the two classes so that the evaluation is fair irrespective of
the skewness, if any, in the test data. Following the common practice, we also
report the classifier performance in terms of Average Class Specific Accuracy
(ACSA) [17,30]. The best performing classifier on the validation set is used for
reporting the test-set performances. Due to space constraints, we provide only
the F1 score corresponding to the minority class in the main paper while the
others are included in the appendix. Although perceptual studies may be the
gold standard for assessing GAN generated visual scenes, it requires fair amount
of expert human effort. In absence of it, inception score [35] is a good proxy.
However, for an image-to-image translation task as is done by a cycle-GAN, in-
ception score may not be ideal [3]. This is especially true in low data regime as
one of the requirements of evaluating using inception score is to evaluate using a
large number of samples (i.e., 50k) [35]. Thus, we have used an inception accu-
racy which measures how good an inception-v3 [39] model trained on real images
can predict the true label of the generated samples. This is given by the accuracy
of the inception-v3 model on the images translated by the cycle-GANs. A cycle-
GAN providing higher accuracy to the same set of test images after translation,
is better than one giving a lower accuracy. For this purpose, the ImageNet pre-
trained inception-v3 model is taken and the classification layer is replaced with
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a layer with two neurons. This modified network is then finetuned on balanced
training data that is disjoint from the test set for all the three datasets. For each
dataset the evaluation procedure is repeated 5 times while keeping the data fixed
but using independent random initialization during runs. The average result of
these 5 runs is reported.

4.1 Experiments on CelebA

Many datasets have contributed to the development and evaluation of GANs.
However, the CelebA [26] dataset has been the most popular and canonical in
this journey. CelebA contains faces of over 10,000 celebrities each of which has
20 images. We used images from this dataset to study the effect of imbalance
for a binary classifier predicting the gender from the face images only. Gender
bias due to imbalance in datasets [29,15] has started to gain attention recently
and face images make the problem more challenging as many attributes can be
common between males and females or can only be very finely discriminated.

Experimental Setup: We took a subset of 900 female images and considered
this to be the majority class. The male images are varied in number from 100
to 900 in regular intervals of 100. In addition, we experimented with 50 male
images too which makes the highest imbalance ratio (γ) for this dataset to be
18. We follow the same architecture of the cycle-GAN as that of Zhu et al. [50]
where the generator consists of two stride-2 convolutions, 9 residual blocks, and
2 fractionally-strided convolutions. For discriminator, similarly, a 5 layer CNN
is used for extracting features, following the PatchGAN [18] architecture. To
avoid over-fitting in presence of less data, our binary classifier is a simple CNN
without any bells and whistles. We used a classifier with same feature extraction
architecture as that of the discriminator used above. The initial convolution
layers are followed by two fully-connected layers of 1024 and 256 neurons along
with a output layer consisting of two neurons. To handle over-fitting further,
we used dropout with probability 0.5 of dropping out neurons from the last
fully-connected layer. Following [50], we have used α = 5 and β = 10 as the
loss weights for the cycle-GAN throughout the experiments. The test set for this
dataset comprises of 300 images of male and female each.

Results: Table 1 shows a comparative evaluation of the classifier performance
of our proposed model for both AUG and ALT mode. In this table, we have
provided the results for upto 500 male images due to space constraint and the
rest are provided in the appendix. We compared with some of the classic meth-
ods as well as methods particularly used with deep learning based classifiers.
Namely they are random oversampling of minority class (OS), random under-
sampling of majority class (US), class frequency based cost sensitive weighing of
loss (CS) [21], adjusting decision threshold by class frequency at prediction time
(TS) and SMOTE [6] are some of the classical methods with which we compare
our proposed method. We have also studied the effect of combining a few of the
above classical methods and are reporting the two combinations - undersam-
pling with cost sensitive learning (US+CS) and oversampling with cost sensitive
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Dataset CelebA CUB-200-2011

#Minority examples 50 100 200 300 400 500 12 25 50 75 100 125

Vanilla 0.1500 0.5220 0.7740 0.8460 0.9020 0.9160 0.0240 0.1180 0.2960 0.3700 0.5520 0.6160

TS 0.1560 0.6300 0.7880 0.8420 0.8960 0.9200 0.0240 0.1180 0.2880 0.3640 0.2567 0.6080
CS 0.7825 0.8012 0.8975 0.9137 0.9250 0.9244 0.3674 0.5007 0.5001 0.6384 0.6485 0.7212
US 0.8029 0.8491 0.9036 0.9176 0.9179 0.9307 0.2952 0.4263 0.6074 0.6893 0.7169 0.7080
OS 0.5805 0.7333 0.8749 0.9036 0.9181 0.9188 0.0602 0.1943 0.3910 0.5007 0.6295 0.6322
US + CS 0.8041 0.8463 0.9019 0.9163 0.9191 0.9220 0.5394 0.4760 0.6655 0.6647 0.6995 0.7201
OS + CS 0.7644 0.8249 0.8916 0.9065 0.9223 0.9260 0.3845 0.4225 0.5739 0.6147 0.6246 0.6913
SMOTE [6] 0.6208 0.7685 0.8807 0.8895 0.9167 0.9208 0.0586 0.4533 0.6375 0.5625 0.6708 0.6674
CBL [7] (β=0.9) 0.6736 0.7771 0.8867 0.9061 0.9118 0.9206 0.1342 0.4006 0.5068 0.5624 0.6187 0.6890
CBL [7] (β=0.99) 0.7012 0.8021 0.8938 0.9118 0.9178 0.9226 0.3259 0.5392 0.6001 0.6196 0.6369 0.6600
CBL [7] (β=0.999) 0.7692 0.8250 0.8922 0.9122 0.9179 0.9220 0.3492 0.5256 0.6105 0.5400 0.5937 0.7212
CBL [7] (β=0.9999) 0.7885 0.8099 0.8977 0.9127 0.9241 0.9226 0.3562 0.5950 0.5138 0.5933 0.6547 0.7344

(ours) ALT Mode 0.8240 0.8520 0.8900 0.8880 0.8520 0.8920 0.5120 0.5120 0.5640 0.6340 0.6940 0.5960
(ours) AUG Mode 0.8060 0.8740 0.9140 0.9160 0.9340 0.9220 0.5940 0.6040 0.6680 0.7060 0.7040 0.7180

Table 1. Comparison of the proposed method on the CelebA and CUB-200-2011
datasets using both AUG and ALT mode. The left half of the table shows the re-
sults for CelebA and the right half shows the results for the pairs of birds chosen
from CUB-200-2011 dataset. The number of majority class training images (female)
in CelebA is fixed to 900 while the CUB-200-2011 majority class (Sparrow) images
250. Minority class F1 score for both are shown where the individual column headings
indicate the number of minority class training images.

learning (OS+CS). We have also compared with recent state-of-the-art approach
using a class balanced loss (CBL) [7] for deep learning based classifiers.

We started with a highly imbalanced dataset of male and female faces where
we randomly took 50 male and 900 female face images. Training the classifier
without any data balancing strategy (we refer this classifier as the ‘vanilla’ clas-
sifier) misclassifies almost all of the minority class examples (male) as majority
class examples (female) resulting in a accuracy of only 0.08 for males while the
accuracy for the female images is perfect (i.e., 1). The F1 score of the minority
class for this case is 0.15. Our AUG mode of training improves the accuracy
more than 5 fold to 0.8060 while the ALT mode of training improves it further
to 0.8240. The fact that the classification is more balanced after the proposed
dataset repairment is corroborated by the simultaneous increase of the precision
of the majority class (female) from 0.5200 to 0.7720 (AUG mode) and 0.8260
(ALT mode). The male classification accuracy in AUG and ALT mode reaches
up to 0.736 and 0.820 respectively. Table 1 shows the minority class F1 score
comparison with the state-of-the-arts. For 4 out of the 6 highly skewed regions
(imbalance ratio ranging from 18 to 1.8) our proposed method significantly out-
performs the rest. Out of the two cases, our augmentation mode is a close second
(for 900:300 scenario). As the imbalance increases, our relative performance is
better and better compared to other approaches. Performing better in highly
skewed data distribution is very important as high imbalance implies more dif-
ficult case. This shows that our approach can deal with the hard cases in the
challenging CelebA dataset.

We have also provided t-SNE [27] visualizations of the learned feature rep-
resentation from the last fully-connected layer the classifier before and after
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. t-SNE visualization for CelebA and Horse2Zebra dataset. Top row contains
the t-SNE visualizations for 2 different imbalance ratio on CelebA dataset. Blue color
indicates representation of majority class which is female while red color indicates the
representation of the minority class i.e male. Fig. 3(a) and (b) show the visualisation
from the imbalanced (vanilla) model and augmented model for 900:50 imbalance ratio
respectively. Fig. 3(c) and (d) represent the 900:100 imbalance ratio. Similarly in the
bottom row, Fig. 3(e) and (f) show the visualizations for imbalance ratio of 450:25
on Horse2Zebra dataset and Fig. 3(g) and (h) show the results for imbalance ratio of
450:50 respectively. Here, blue color indicates Horses (majority class) while the red
color indicates Zebras (minority class). As can be seen from all the figures, a clear
separation of the classes can be visualized . Best viewed in color.

the dataset repairment. Fig. 3(a) and (b) show the visualization of the test set
features for the vanilla classifier and the same trained in augmented mode re-
spectively. This is for the case when the number of minority training examples is
50 while the majority training example is 900. It can be seen that the separation
between the two classes is better after the repairment even in presence of such
high imbalance. The same can be seen for the imbalanced training with 100 male
and 900 female faces as shown in Fig. 3(c) (vanilla) and (d) (AUG).

Though in the high imbalance region (towards left of Table 1), both the modes
of our proposed approach perform very good, the augmentation mode of training
is consistently better than the alternate mode of training. The significance of
the alternate mode of training, though, lies in the fact that it allows the cycle-
GAN to improve itself by helping the classifier to discriminate better in presence
of highly skewed training data. The improvement of performance of the GAN
in terms of inception accuracy is shown in Table 2. Except for one scenario,
the GAN performance improves for all the rest. Thus, the proposed approach
provides a choice between going for bettering the GAN by trading off a little
in the classifier performance (ALT mode) or going for improving the classifier
without changing the GAN (AUG mode).
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Celeb A Dataset CUB-200-2011 Dataset Horse2Zebra Dataset

# Male CycleGAN ALT Mode #Flycatcher CycleGAN ALT Mode #Zebra CycleGAN ALT Mode

50 0.4798 0.4677 12 0.4149 0.4554
100 0.5574 0.6220 25 0.4238 0.4059 25 0.3532 0.3480
200 0.7646 0.8152 50 0.4337 0.4505 50 0.3880 0.2680
300 0.7516 0.8200 75 0.4347 0.4653 75 0.5000 0.4440
400 0.8122 0.8455 100 0.4317 0.4307 100 0.5492 0.4780
500 0.8286 0.8457 125 0.4198 0.4604

Table 2. Comparison of the inception accuracies of the Cycle-GAN before and af-
ter applying our proposed dataset repairment approach (in ALT mode). The table is
divided into 3 parts from left to right corresponding to the three datasets on which
the experimentations are performed. The dataset names are marked as headings of
the parts. Each part is further divided into two halves where the left half shows the
performance for the vanilla cycle-GAN and the right half shows the same after the
cycle-GAN is trained in alternate mode of the proposed approach. The values shown
are averaged over 5 runs for each of the cases. For two (CelebA and CUB-200-2011) out
of the three datasets, the ALT mode of training improves the Cycle-GAN performance
for most of the cases, while for Horse2Zebra dataset the performance is not increasing
which may be due to the distintive feature of the dataset where the attributes of the
two classes are markedly different.

Visualizing important attributes for classification: We aim to visually con-
firm that the proposed approach helps the classifier to look at the right evidences.
For this purpose, we rely on two visual explanation techniques: Grad-CAM [37]
and RISE [31]. They provide explanation heatmaps pointing to locations in the
input image that are most important for a decision. Fig. 4 shows visualiza-
tions for some representative minority images when they are passed through
the vanilla classifier and the same after training in AUG and ALT mode. The
top row shows a representative zebra image from the Horse2Zebra dataset. The
vanilla model tends to concentrate on the surroundings (context) to classify
(incorrectly), while the proposed models accurately concentrate on the zebras
(object) for correct classification. Similarly, the bottom row shows a flycatcher
image from CUB dataset. When classifying the image, the vanilla model tends
to scatter its attention while the proposed models base their prediction on right
areas by learning to ignore inappropriate evidences.

4.2 Experiments on CUB

CUB-200-2011 birds dataset [43] is a popular benchmark dataset for fine-grained
image classification. It contains 11,788 images of 200 different classes of North
American bird species. Fine-grained classification is inherently difficult task as
the members of the classes have very similar attributes with small inter-class
variation requiring the classifier to focus on finer aspects of the images that are
both descriptive and adequately discriminative. The challenges of fine-grained
classification requires a lot of parameters to learn [10,23,47] which in turn needs
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Original Image
RISE Grad-CAM

Vanilla Mode AUG Mode ALT Mode Vanilla Mode AUG Mode ALT Mode

Fig. 4. Explanation heatmaps of images from Horse2Zebra (first row) and CUB (second
row). Leftmost column shows the images while col 2-4 and 5-7 show RISE and Grad-
CAM heatmaps respectively (importance increases from blue to red). The column sub-
headings denote the corresponding classifier. Note that the heatmaps are generated
for the predicted output by the classifiers. For vanilla mode, the prediction is wrong
(horse and sparrow respectively) while for both AUG and ALT mode they are right.
An interesting observation is revealed by the RISE generated heatmap (first row 4th

col) showing that the evidence for ALT mode classifier is coming from a third zebra
hidden in the grass. Best viewed in color.

a lot of training examples for proper training. Thus fine-grained classification
provides us with an interesting testcase for low-data high-bias regime of classi-
fication.
Experimental Setup: For the experimentations, we have chosen two similar
looking bird species (Flycatcher and Sparrow). We took all the images (226)
of flycatcher that the dataset has and considered it to be the minority class.
The 226 flycatcher images are split into 125 train, 50 val and 51 test images.
The number of majority class (sparrow) images were kept constant at 250. We
vary the number of flycatcher images from 25 to 125 in steps of 25 making the
imbalance ratio vary from 10 to 5 in steps of 1. In addition, we also experimented
with only 12 flycatcher images. The val and test set size of sparrow is kept same
as those of the flycatcher class. The model architectures are kept same as those
used for CelebA experiments (ref. Sec 4.1).
Results: Comparative evaluations of the proposed approach for the pair of birds
in the CUB-200-2011 data set is shown in the rightmost part of Table 1. The table
provides the F1 score of the minority class for the different approaches. It can
be observed that our proposed method in augmentation mode is outperforming
other approaches for highly skewed training data. The alternate mode of training
the classifier does not perform as good as it does for the face images. However,
the cycle-GAN inception accuracy gets improved for 4 out of 6 cases as can be
seen in the middle part of Table 2 where for highly skewed training data, the
alternate model betters the vanilla cycle-GAN.

4.3 Experiments on Horse2Zebra

Cycle-GAN [50] has been particularly successful in translating between images
of horses and zebras. Unlike finegrained bird images, horses and zebras have dis-
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#Zebra Vanilla TS CS US OS US+CS OS+CS SMOTE [6]
CBL [7] Ours

β = 0.9 β = 0.99 β = 0.999 β = 0.9999 ALT AUG

25 0.0500 0.0340 0.7925 0.1333 0.4750 02865 0.7366 0.2108 0.7613 0.8116 0.8263 0.8120 0.8040 0.8500
50 0.5580 0.6260 0.8329 0.7891 0.8012 0.7343 0.8522 0.7298 0.8347 0.8316 0.8222 0.8192 0.8320 0.8620
75 0.7180 0.7040 0.8699 0.8457 0.8370 0.8644 0.8680 0.7902 0.8562 0.8587 0.8524 0.8633 0.8020 0.8780
100 0.7680 0.7940 0.8684 0.8521 0.8628 0.8711 0.8735 0.8254 0.8446 0.8595 0.8683 0.8657 0.8220 0.8520

Table 3. Performance comparison on Horse2Zebra dataset. The first row lists the
approaches against which we have compared our performance. The number of majority
class training images (horses) is fixed at 450 while the number of zebra images used
in training is shown as the row headings. The minority class F1 score is seen to get
improved with application of our proposed approach especially in the augmented mode
for high imbalance regions.

tinctive features with marked difference in skin texture which allows a classifier
to perform well even with very less data. To test with this end of the spectrum,
our proposed approach was applied for a classification task between horse and
zebra images in presence of high imbalance in training data.
Experimental Setup: The Horse2Zebra dataset [50] contains 1187 images of
horses and 1474 images of zebras. We took the horse class as majority and used
a total of 450 Horse images. The number of minority class (zebra) examples were
varied from 25 to 100 in steps of 25 allowing us to experiment with low data
and low balance regime. The val and test set consists of 100 and 150 images
respectively for each of the animal categories. For this case also, the model
architectures are kept same as those used for CelebA experiments (ref. Sec 4.1).
Results: Table 3 shows comparative evaluations of the proposed approach for
this dataset in terms of the F1 score of the minority class (zebra). The proposed
method in AUG mode of training comprehensively outperforms the other ap-
proaches in the high imbalance region with the difference in F1 score with the
second best approach reaching almost 2.5% for the highest imbalance ratio with
the number of training images for zebra being only 25. The inception accuracies
of the cycle-GAN before and after training with ALT mode is provided in the
rightmost part of Table. 2. For this dataset we got consistently worse GANs while
training in this mode. This can be due to the distinctive texture between the two
animals that aids classification but imposes difficulty in translation especially in
presence of the classifier loss coming from noisy data.

5 Conclusion

We propose a joint generation and classification network to handle severe data
imbalance by transforming majority class examples to minority class and vice
versa. Our approach explores a Cycle-consistent GANs that not only generates
training samples that are much broader and diverse but also balanced in terms
of number of examples. Experiments on three standard datasets demonstrate
that both classifier and the GAN achieves superior performance than existing
data imbalance mitigation approaches.
Acknowledgements: This work was partially supported by the IIT Kharagpur
ISIRD program and the SERB Grant SRG/2019/001205.
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Appendix

A Training Details

A.1 On CelebA Dataset

– The Cycle-GAN was trained from scratch on the imbalance data with a
learning rate of 2e-4, and weights initialized from a Gaussian distribution
N(0, 0.02). We follow [50] for the hyperparameters and choice of optimizers.
The learning rate was kept constant through out the training. The image
size used for training is 256x256.

– We use the 200-Epoch trained models for generating the translated images
and using them for training the classifier in AUG-Mode.

• In AUG-Mode, we train the Classifier for 20 Epochs and use a validation-
set containing 300 images from each class to select the best model.

– For ALT-Mode training, we use the weights of the 200-Epoch models of
Vanilla Cycle-GAN to warm-start the Cycle-GAN part of the ALT-Mode
Model and the Classifier part is initialized with weights taken from a Gaus-
sian distribution of N(0, 0.02).

• The interval for swapping the training in AUG-Mode was kept to be
5-Epochs.

• The Classifier is trained for the first 5-Epochs keeping the Cycle-GAN
part frozen.

• In the next 5-Epochs, the Cycle-GAN is trained keeping the Classifier
part frozen, but in this case the additional loss obtained from the Clas-
sifier part is also back-propagated through the Cycle-GAN part.

• The above mentioned training-swap procedure is followed till the models
are trained for a total of 100-Epochs.

– For evaluating the GANs we take the GAN models obtained after the 100-
Epoch training in ALT-Mode and compare them with the corresponding
models obtained after 300-Epoch training of Vanilla Cycle-GAN. The 300-
Epoch models of Vanilla Cycle-GAN were chosen to provide a fair com-
parison of the GAN Performance as in the AUG-Mode, we warm-start the
Cycle-GAN part with 200-Epoch Models.

A.2 On CUB Dataset

– The Cycle-GANs were trained in the same fashion as used in case of the
CelebA Dataset with some changes mentioned below. The learning rate was
kept constant for the first 50 Epochs and is linearly decayed to zero over the
next 150 Epochs of training.

– For CUB, we use the 50-Epoch trained models for AUG-Mode.

• In AUG-Mode, all procedures are kept same as that of CelebA but we
use a validation-set containing 50 images from each class to select the
best model.
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– For ALT-Mode training, we use the weights of the 50-Epoch models of
Vanilla Cycle-GAN to warm-start the Cycle-GAN part of the ALT-Mode
Model and the rest are same as that in case of CelebA Dataset.
• The training-swap procedure is followed till the models are trained for a

total of 50-Epochs.
– For evaluating the GANs we take the GAN models obtained after the 50-

Epoch training in ALT-Mode and compare them with the corresponding
models obtained after 100-Epoch training of Vanilla Cycle-GAN.

A.3 On Horse2Zebra Dataset

– All the training procedures and the Epoch-checkpoints for using the models
are kept same as that in the case of the CUB Dataset, except we use a
validation-set containing 100 images from each class in this case.

Dataset CelebA

#Minority examples 50 100 200 300 400 500 600 700 800 900

Vanilla 0.1500 0.5220 0.7740 0.8460 0.9020 0.9160 0.9260 0.9320 0.9380 0.9400

US 0.8029 0.8491 0.9036 0.9176 0.9179 0.9307 0.9223 0.9152 0.9216 0.9236
TS 0.1560 0.6300 0.7880 0.8420 0.8960 0.9200 0.9260 0.9320 0.9380 0.9400
CS 0.7825 0.8012 0.8975 0.9137 0.9250 0.9244 0.9250 0.9267 0.9256 0.9359
OS 0.5805 0.7333 0.8749 0.9036 0.9181 0.9188 0.9215 0.9286 0.9321 0.9329
US + CS 0.8041 0.8463 0.9019 0.9163 0.9191 0.9220 0.9259 0.9277 0.9321 0.9250
OS + CS 0.7644 0.8249 0.8916 0.9065 0.9223 0.9260 0.9310 0.9313 0.9297 0.9393
SMOTE [6] 0.6208 0.7685 0.8807 0.8895 0.9167 0.9208 0.9285 0.9350 0.9387 0.9357
CBL [7] (β=0.9) 0.6736 0.7771 0.8867 0.9061 0.9118 0.9206 0.9260 0.9376 0.9282 0.9384
CBL [7] (β=0.99) 0.7012 0.8021 0.8938 0.9118 0.9178 0.9226 0.9190 0.9282 0.9348 0.9380
CBL [7] (β=0.999) 0.7692 0.8250 0.8922 0.9122 0.9179 0.9220 0.9251 0.9220 0.9326 0.9317
CBL [7] (β=0.9999) 0.7885 0.8099 0.8977 0.9127 0.9241 0.9226 0.9261 0.9320 0.9307 0.9376

(ours) ALT Mode 0.8240 0.8520 0.8900 0.8880 0.8520 0.8920 0.8860 0.8880 0.8840 0.8760
(ours) AUG Mode 0.8060 0.8740 0.9140 0.9160 0.9340 0.9220 0.9140 0.9280 0.9340 0.9340

Table 4. Comparison of the proposed method on the CelebA dataset using both AUG
and ALT mode. The number of majority class training images (female) in CelebA is
fixed to 900. Here we provide the F1 score of the minority class (Male) for all the
imbalance ratios starting from 900:50 (Female:Male) to a perfectly balanced scenario
of 900:900 (Female:Male) images in the training set. The F1 score for imabalance
ratio till 900:500 (Female:Male) is replicated from the main paper for completeness.
Our proposed approach outperforms all others comprehensively in the high imbalance
regions. The additional ratios show that the traditional methods start to do well as the
dataset is more and more balanced. However, our augmented way of training is still
very good and the difference in performance is only at the third decimal place in the
high 90’s.
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Dataset CelebA

#Male 50 100 200 300 400 500 600 700 800 900

Vanilla 0.6840 0.7560 0.8380 0.8740 0.9120 0.9240 0.9300 0.9280 0.9340 0.9380

US 0.8261 0.8610 0.9043 0.9170 0.9192 0.9293 0.9217 0.9141 0.9168 0.9210
TS 0.6860 0.7840 0.8440 0.8740 0.9080 0.9220 0.9300 0.9320 0.9340 0.9380
CS 0.8301 0.8436 0.9060 0.9148 0.9256 0.9255 0.9243 0.9286 0.9250 0.9334
OS 0.7691 0.8170 0.8885 0.9080 0.9218 0.9198 0.9238 0.9301 0.9319 0.9331
US + CS 0.7936 0.8643 0.8986 0.9122 0.9147 0.9172 0.9234 0.9249 0.9277 0.9209
OS + CS 0.8268 0.8513 0.8973 0.9119 0.9230 0.9259 0.9323 0.9320 0.9303 0.9380
SMOTE [6] 0.7774 0.8288 0.8936 0.8981 0.9192 0.9218 0.9294 0.9363 0.9379 0.9356
CBL [7] (β=0.9) 0.7963 0.8372 0.8962 0.9104 0.9147 0.9220 0.9260 0.9370 0.9284 0.9376
CBL [7] (β=0.99) 0.8011 0.8483 0.9017 0.9161 0.9195 0.9247 0.9229 0.9284 0.9338 0.9366
CBL [7] (β=0.999) 0.8218 0.8587 0.9031 0.9164 0.9186 0.9252 0.9256 0.9246 0.9328 0.9296
CBL [7] (β=0.9999) 0.8322 0.8494 0.9047 0.9111 0.9238 0.9240 0.9278 0.9306 0.9306 0.9370

ALT Mode 0.8300 0.8580 0.8840 0.8820 0.8380 0.8940 0.8820 0.8820 0.8860 0.8780
AUG Mode 0.8360 0.8820 0.9160 0.9160 0.9300 0.9200 0.9160 0.9260 0.9320 0.9320

Table 5. Comparison of the proposed method on the CelebA dataset using both AUG
and ALT mode. The number of majority class training images (female) in CelebA is
fixed to 900. Here we provide the F1 score of the majority class (Female) for
all the imbalance ratios starting from 900:50 (Female:Male) to a perfectly balanced
scenario of 900:900 (Female:Male) images in the training set. We can see that our
proposed approach is comprehensively outperforming the other methods in the highly
imbalanced region (left part of the table) and performing at par with the other methods
in the more balanced scenario (towards right of the table). While Table 4 shows that
the minority class (male) classification gets improved due to our Cycle-GAN based
dataset repairment, it also improves the classification performance of the majority
class (female).
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Dataset CelebA

#Male 50 100 200 300 400 500 600 700 800 900

Vanilla 0.5400 0.6760 0.8120 0.86400 0.9090 0.9210 0.9290 0.9280 0.9350 0.9360

US 0.8153 0.8553 0.9040 0.9173 0.9187 0.9300 0.9220 0.9147 0.9193 0.9223
TS 0.5430 0.7290 0.8210 0.8590 0.9030 0.9200 0.9300 0.9300 0.9350 0.9360
CS 0.8097 0.8250 0.9020 0.9143 0.9253 0.9250 0.9247 0.9277 0.9253 0.9347
OS 0.7030 0.7830 0.8823 0.9060 0.9200 0.9193 0.9227 0.9293 0.9320 0.9330
US + CS 0.8003 0.8560 0.9003 0.9143 0.9170 0.9197 0.9247 0.9263 0.9300 0.9230
OS + CS 0.8010 0.8393 0.8947 0.9093 0.9227 0.9260 0.9317 0.9317 0.9300 0.9387
SMOTE [6] 0.7197 0.8033 0.8877 0.8940 0.9180 0.9213 0.9290 0.9357 0.9383 0.9357
CBL [7] (β=0.9) 0.7493 0.8123 0.8917 0.9083 0.9133 0.9213 0.9260 0.9373 0.9283 0.9380
CBL [7] (β=0.99) 0.7613 0.8287 0.8980 0.9140 0.9187 0.9237 0.9210 0.9283 0.9343 0.9373
CBL [7] (β=0.999) 0.7990 0.8437 0.8980 0.9143 0.9183 0.9237 0.9253 0.9233 0.9327 0.9307
CBL [7] (β=0.9999) 0.8130 0.8320 0.9013 0.9120 0.9240 0.9233 0.9270 0.9313 0.9307 0.9373

ALT Mode 0.8260 0.8540 0.8880 0.8870 0.8460 0.8930 0.8820 0.8860 0.8850 0.8790
AUG Mode 0.8230 0.8800 0.9180 0.9160 0.9300 0.9210 0.9150 0.9260 0.9350 0.9360

Table 6. Comparison of the proposed method on the CelebA dataset using both AUG
and ALT mode in terms of Average Class Specific Accuracy (ASCA). The class
specific accuracy is averaged over the two classes (Male and Female). The number
of majority class training images (Female) in CelebA is fixed to 900. We provide the
ACSA for all the imbalance ratios starting from 900:50 (Female:Male) to a perfectly
balanced scenario of 900:900 (Female:Male) images in the training set. We can see
that our proposed approach is comprehensively outperforming the other methods in
the highly imbalanced region (left part of the table) and performing at par with the
other methods in the more balanced scenario (towards right of the table). The ACSA
values show that the recall values for both the classes increase on average as a result
of the application of imbalance mitigation strategies but our proposed method works
best especially in presence of highly skewed training data.
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Dataset Horse2Zebra

#Zebra 25 50 75 100

Vanilla 0.6740 0.7680 0.8200 0.8400

US 0.5333 0.8217 0.8784 0.8741
TS 0.6720 0.7860 0.8160 0.8540
CS 0.8469 0.8692 0.8919 0.8873
OS 0.7452 0.8559 0.8742 0.8821
US + CS 0.4410 0.8097 0.8880 0.8912
OS + CS 0.8282 0.8779 0.8910 0.8892
SMOTE [6] 0.6964 0.8205 0.8511 0.8684
CBL [7] (β=0.9) 0.8373 0.8658 0.8856 0.8790
CBL [7] (β=0.99) 0.8537 0.8643 0.8816 0.8856
CBL [7] (β=0.999) 0.8569 0.8585 0.8793 0.8862
CBL [7] (β=0.999) 0.8560 0.8668 0.8862 0.8868

ALT Mode 0.8380 0.8120 0.7880 0.8120
AUG Mode 0.8800 0.8900 0.8980 0.8760

Table 7. Comparison of the proposed method on the Horse2Zebra dataset using both
AUG and ALT mode. The number of majority class training images (Horse) is fixed
to 450. Here we provide the F1 score of the majority class (Horse) for all the
imbalance ratios starting from 450:25 (Horse:Zebra) to a perfectly balanced scenario
of 450:100 (Horse:Zebra) images in the training set. We can see that our proposed
approach is comprehensively outperforming the other methods in the highly imbalanced
region (left part of the table) and performing at par with the other methods in the
more balanced scenario (towards right of the table). While Table 3 in the main paper
shows that the minority class (zebra) classification gets improved due to our Cycle-
GAN based dataset repairment, it also improves the classification performance of the
majority class (horse).
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Dataset Horse2Zebra

#Zebra 25 50 75 100

Vanilla 0.5150 0.6940 0.7800 0.8100

US 0.5000 0.8080 0.8640 0.8640
TS 0.5090 0.7290 0.7740 0.8290
CS 0.8240 0.8533 0.8820 0.8787
OS 0.65733 0.8333 0.8580 0.87330
US + CS 0.5133 0.7800 0.8773 0.8820
OS + CS 0.7927 0.8667 0.8807 0.8820
SMOTE [6] 0.5627 0.7847 0.8260 0.8500
CBL [7] (β=0.9) 0.8067 0.8520 0.8727 0.8640
CBL [7] (β=0.99) 0.8353 0.85 0.8713 0.8740
CBL [7] (β=0.999) 0.8433 0.8427 0.8673 0.8780
CBL [7] (β=0.9999) 0.8380 0.8467 0.8760 0.8773

ALT Mode 0.8240 0.8230 0.7980 0.8160
AUG Mode 0.8670 0.8770 0.8900 0.8630

Table 8. Comparison of the proposed method on the Horse2Zebra dataset using both
AUG and ALT mode in terms of Average Class Specific Accuracy (ASCA). The
class specific accuracy is averaged over the two classes (Horse and Zebra). The number
of majority class training images (Horse) is fixed to 450. We provide the ACSA for
all the imbalance ratios starting from 450:25 (Horse:Zebra) to 450:100 (Horse:Zebra)
images in the training set. We can see that our proposed approach is comprehensively
outperforming the other methods. The ACSA values show that the recall values for both
the classes increase on average as a result of the application of imbalance mitigation
strategies but our proposed method works best especially in presence of highly skewed
training data.
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Dataset CUB-200-2011

#Flycatcher 12 25 50 75 100 125

Vanilla 0.6700 0.6800 0.7020 0.7020 0.7340 0.7380

US 0.4000 0.6694 0.6474 0.6803 0.6470 0.6113
TS 0.6720 0.6800 0.7020 0.7060 0.6915 0.7320
CS 0.6800 0.7134 0.6994 0.7027 0.7373 0.7184
OS 0.6721 0.6916 0.7100 0.7174 0.7261 0.7221
US + CS 0.3058 0.6033 0.6287 0.6573 0.6116 0.6650
OS + CS 0.5712 0.6784 0.6965 0.6808 0.7108 0.7136
SMOTE [6] 0.6685 0.6949 0.6123 0.6478 0.7334 0.7250
CBL [7] (β=0.9) 0.6695 0.6028 0.7217 0.7317 0.7228 0.7381
CBL [7] (β=0.99) 0.6763 0.7080 0.7424 0.7218 0.7439 0.7102
CBL [7] (β=0.999) 0.6591 0.7164 0.7149 0.7073 0.7036 0.7210
CBL [7] (β=0.999) 0.6523 0.7094 0.7058 0.7142 0.7387 0.7179

ALT Mode 0.6260 0.6180 0.6680 0.6160 0.6640 0.6200
AUG Mode 0.6180 0.6660 0.6560 0.7100 0.6900 0.7180

Table 9. Comparison of the proposed method on the CUB-200-2011 dataset using
both AUG and ALT mode. The number of majority class training images (sparrow) is
fixed to 250. Here we provide the F1 score of the majority class (Sparrow) for
all the imbalance ratios starting from 250:12 (Sparrow:Flycatcher) to 250:125 (Spar-
row:Flycatcher) images in the training set. We can see that our proposed approach is
not doing good in recovering the F1 score of the majority class in this dataset. This
may be due to the presence of very few images for both the classes and also due to the
difficult finegrained nature of the task in this particular dataset. The effect can also
be seen in Table 10 where the ACSA is just at par for these ratios for the proposed
method. However in Table 1 of the main paper we see that the F1 score for the other
class (Flycather) is always high for our proposed method.

Dataset CUB-200-2011

#Flycatcher 12 25 50 75 100 125

Vanilla 0.5060 0.5320 0.5800 0.5960 0.6660 0.6900

US 0.5040 0.5980 0.6340 0.6860 0.6880 0.6680
TS 0.5060 0.5320 0.5800 0.5980 0.6101 0.6840
CS 0.5800 0.6400 0.6300 0.6800 0.7000 0.7200
OS 0.5140 0.5540 0.6080 0.6420 0.6860 0.6840
US + CS 0.5380 0.5780 0.6520 0.6620 0.6640 0.6960
OS + CS 0.5440 0.5960 0.6500 0.6520 0.6740 0.7040
SMOTE [6] 0.5100 0.6200 0.6460 0.6280 0.7060 0.7020
CBL [7] (β=0.9) 0.5220 0.6056 0.6460 0.6700 0.6800 0.7180
CBL [7] (β=0.99) 0.5640 0.6440 0.6880 0.6800 0.7000 0.6900
CBL [7] (β=0.999) 0.5600 0.6460 0.6760 0.6440 0.6580 0.7220
CBL [7] (β=0.9999) 0.5520 0.6640 0.6360 0.6660 0.7040 0.7280

ALT Mode 0.5800 0.5800 0.6280 0.6320 0.6800 0.6160
AUG Mode 0.6080 0.6400 0.6620 0.7080 0.6980 0.7180

Table 10. Comparison of the proposed method on the CUB-200-2011 dataset using
both AUG and ALT mode in terms of Average Class Specific Accuracy (ASCA).
The class specific accuracy is averaged over the two classes (Sparrow and Flycatcher).
The number of majority class training images (Sparrow) is fixed to 250. We provide
the ACSA for all the imbalance ratios starting from 250:12 (Sparrow:Flycatcher) to
250:125 (Sparrow:Flycatcher) images in the training set. We can see that our proposed
approach is better or at par with the other methods.
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Real

γ CycleGAN ALT-Mode CycleGAN ALT-Mode
Zebra Zebra Horse Horse

450/25

450/50

450/75

450/100

Table 11. Comparison of generated images from only CycleGAN and our ALT Mode
trained model for Horse2Zebra dataset. γ indicates the imabalance ratio which is de-
fined as the number of training examples in the majority class to the same in the
minority class. Here horse is the majority class and zebra is the minority class. The
top row indicates the input images to the generators of both cycleGAN and ALT mode
trained model. Subsequently, every row indicates the generated images from both the
models respectively for the imbalance ratio mentioned in the leftmost column.
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Real

γ CycleGAN ALT-Mode CycleGAN ALT-Mode
Flycatcher Flycatcher Sparrow Sparrow

250/12

250/25

250/50

250/75

250/100

250/125

Table 12. Comparison of generated images from only CycleGAN and our ALT Mode
trained model for Fine grainedCUB dataset. γ indicates the imabalance ratio which is
defined as the number of training examples in the majority class to the same in the
minority class. Here sparrow is the majority class while flycatcher is the minority class.
The top row indicates the input images to the generators of both cycleGAN and ALT
mode trained model. Subsequently, every row indicates the generated images from both
the models respectively for the imbalance ratio mentioned in leftmost column.
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RISE heatmaps for Horse2Zebra dataset

Original Image Vanilla Mode ALT Mode AUG Mode

Table 13. RISE heatmaps of images from Horse2Zebra dataset. In each of the rows
the leftmost column (col 1) shows the original image of the Zebra while col 2-4 show
RISE heatmaps for Vanilla, ALT and AUG Modes respectively (importance increases
from blue to red). The column sub-headings denote the corresponding classifier. Note
that the heatmaps are generated for the predicted output by the classifiers. Improve-
ment in the explanations can be observed for the ALT and AUG Mode classifiers as
compared to the corresponding Vanilla classifier.
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RISE heatmaps for CUB dataset

Original Image Vanilla Mode ALT Mode AUG Mode

Table 14. RISE heatmaps of images from CUB dataset. In each of the rows the
leftmost column (col 1) shows the original image of the Flycatcher while col 2-4 show
RISE heatmaps for Vanilla, ALT and AUG Modes respectively (importance increases
from blue to red). The column sub-headings denote the corresponding classifier. Note
that the heatmaps are generated for the predicted output by the classifiers. Improve-
ment in the explanations can be observed for the ALT and AUG Mode classifiers as
compared to the corresponding Vanilla classifier.
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GradCAM heatmaps for Horse2Zebra dataset

Original Image Vanilla Mode ALT Mode AUG Mode

Table 15. GradCAM heatmaps of images from Horse2Zebra dataset. In each of the
rows the leftmost column (col 1) shows the original image while col 2-4 show GradCAM
heatmaps for Vanilla, ALT and AUG Modes respectively (importance increases from
blue to red). The column sub-headings denote the corresponding classifier. Note that
the heatmaps are generated for the predicted output by the classifiers. Improvement in
the explanations can be observed for the ALT and AUG Mode classifiers as compared
to the corresponding Vanilla classifier.
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GradCAM heatmaps for CUB dataset

Original Image Vanilla Mode ALT Mode AUG Mode

Table 16. GradCAM heatmaps of images from CUB dataset. In each of the rows
the leftmost column (col 1) shows the original image while col 2-4 show GradCAM
heatmaps for Vanilla, ALT and AUG Modes respectively (importance increases from
blue to red). The column sub-headings denote the corresponding classifier. Note that
the heatmaps are generated for the predicted output by the classifiers. Improvement in
the explanations can be observed for the ALT and AUG Mode classifiers as compared
to the corresponding Vanilla classifier.
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