
Supplementary for Task2Sim: Towards Effective Pre-training and Transfer from
Synthetic Data

Samarth Mishra†1 Rameswar Panda2 Cheng Perng Phoo†3 Chun-Fu (Richard) Chen2

Leonid Karlinsky2 Kate Saenko1,2 Venkatesh Saligrama1 Rogerio S. Feris2
1Boston University 2MIT-IBM Watson AI Lab 3Cornell University

A. Task2Vec
We used Task2Vec [1] representations for downstream

tasks for our Task2Sim model. Task2Vec of a task consists
of diagonal elements of the Fisher information matrix (FIM)
of the outputs with respect to the network parameters over
the distribution of downstream task examples (Refer to Sec.
2 of [1] for more details). For this purpose, following [1],
we used a single Imagenet pre-trained probe network with
only the classifier layer trained on specific tasks (using the
training set of examples for that task). In our experiments,
a Resnet-18 probe network was used, resulting in a 9600-
dimensional Task2Vec task representation.

How much downstream data do we need access to? In
the case of models pre-trained using an approach that is
not task-adaptive, there is no need to access any down-
stream data while pre-training. Given that task-adaptive
approaches need a downstream task representation, in the
main paper, we used Task2Vec. Here, following [1] we used
all labeled examples from the training set of the downstream
task to represent its distribution (in computing the FIM).
However, we show that the FIM can be estimated by using
fewer examples from the downstream task and the result-
ing Task2Vec vectors can be used to train Task2Sim with
no degradation in performance (see Table 1). This property
also makes Task2Sim more practical since a user need not
wait to collect labels for all data pertaining to their down-
stream application in order to generate pre-training data us-
ing Task2Sim.

B. Similarity between Learned Features
We used centered kernel alignment (CKA) [13] to find

the similarity between features learned by the Resnet-50
backbone pre-trained on different image sets containing
100k images from 237 classes. Figure 1, shows these
similarities computed using the output features at different

† Work done as interns at MIT-IBM Watson AI Lab

Fraction of data
used for Task2Vec

Avg Downstream Acc.
Seen Tasks Unseen Tasks

100% 30.46 53.06
50% 30.69 52.70
20% 30.72 53.11
10% 31.18 53.57

Table 1. Average downstream performance (evaluated with 5NN
classifier and using 40k images from 100 classes for pre-training)
over seen and unseen tasks using different fractions of downstream
training data (randomly subsampled) used to compute Task2Vec
task representations for Task2Sim model. Task2Sim performance
does not degrade when fewer downstream examples are used for
computing Task2Vec.

stages of the backbone (Stages 1-4 are intermediate outputs
after different convolutional blocks in the resnet).

A few interesting phenomena surface: Task2Sim fea-
tures (i.e. features produced by a model pre-trained on
Task2Sim generated dataset) are more similar to Imagenet
features, than Domain Randomization. Thus Task2Sim in
some manner, mimics features learned on real images bet-
ter.

We can also see that features early on in the network are
largely similar across all kinds of pre-training and they only
start differentiating at later stages, suggesting high similar-
ity in lower level features (e.g. edges, curves, textures, etc.)
across different pre-training datasets. Also, as might be ex-
pected, features post downstream finetuning are more simi-
lar to each other than before, while still quite far away from
being identical.

C. Additional Results
C.1. Effect of Different Backbones

In Figures 2 and 3, we show the average downstream
performance over the seen and unseen tasks respectively,
using different Resnet backbones (of different sizes). For
this study, we used the same pre-training procedure across
all backbones. We see that results are largely consistent

1



Task2Sim

Dom. Rand.

ImageNet*

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.94 0.97

0.94 1.00 0.92

0.97 0.92 1.00

Stage 1

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.91 0.93

0.91 1.00 0.87

0.93 0.87 1.00

Stage 2

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.78 0.87

0.78 1.00 0.74

0.87 0.74 1.00

Stage 3

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.51 0.71

0.51 1.00 0.45

0.71 0.45 1.00

Stage 4

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.30 0.42

0.30 1.00 0.35

0.42 0.35 1.00

Stage 5

0.0

0.2

0.4

0.6

0.8

1.0

CKA Feature Similarities (after pre-training) - averaged over Seen tasks

Task2Sim

Dom. Rand.

ImageNet*

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.93 0.97

0.93 1.00 0.92

0.97 0.92 1.00

Stage 1

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.90 0.92

0.90 1.00 0.88

0.92 0.88 1.00

Stage 2

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.76 0.90

0.76 1.00 0.74

0.90 0.74 1.00

Stage 3

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.46 0.76

0.46 1.00 0.49

0.76 0.49 1.00

Stage 4

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.32 0.50

0.32 1.00 0.39

0.50 0.39 1.00

Stage 5

0.0

0.2

0.4

0.6

0.8

1.0

CKA Feature Similarities (after pre-training) - averaged over Unseen tasks

Task2Sim

Dom. Rand.

ImageNet*

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.97 0.97

0.97 1.00 0.95

0.97 0.95 1.00

Stage 1

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.94 0.96

0.94 1.00 0.95

0.96 0.95 1.00

Stage 2

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.78 0.88

0.78 1.00 0.83

0.88 0.83 1.00

Stage 3

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.50 0.82

0.50 1.00 0.49

0.82 0.49 1.00

Stage 4

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.48 0.70

0.48 1.00 0.50

0.70 0.50 1.00

Stage 5

0.0

0.2

0.4

0.6

0.8

1.0

CKA Feature Similarities (after downstream fine-tuning) - averaged over Seen tasks

Task2Sim

Dom. Rand.

ImageNet*

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.97 0.98

0.97 1.00 0.97

0.98 0.97 1.00

Stage 1

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.95 0.96

0.95 1.00 0.96

0.96 0.96 1.00

Stage 2

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.91 0.94

0.91 1.00 0.91

0.94 0.91 1.00

Stage 3

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.67 0.86

0.67 1.00 0.67

0.86 0.67 1.00

Stage 4

Task2Sim

Dom. Rand.

ImageNet*

1.00 0.61 0.76

0.61 1.00 0.67

0.76 0.67 1.00

Stage 5

0.0

0.2

0.4

0.6

0.8

1.0

CKA Feature Similarities (after downstream fine-tuning) - averaged over Unseen tasks

Figure 1. CKA similarities between features from backbones trained on different pre-training datasets (with 100k images from 237
classes). Similarities have been computed using features output at different stages of the Resnet-50 model. We notice that features at
earlier stages across all methods of pre-training are quite similar and only later in the Resnet, do they start differentiating. We also observe
that Task2Sim’s features are more similar to Imagenet than those produced by pre-training with Domain Randomization.



resnet18 resnet50 resnet101
Num Classes used for Pretraining

66

68

70

72

74

76

78

Do
wn

st
re

am
 fi

ne
tu

ne
 A

cc
ur

ac
y

Eval : Full Network Finetuning. Average downstream performance

Task2Sim
Domain Randomization
Imagenet

resnet18 resnet50 resnet101
Num Classes used for Pretraining

40

45

50

55

60

65

70

Do
wn

st
re

am
 li

ne
va

l A
cc

ur
ac

y

Eval : Linear Probing. Average downstream performance

Task2Sim
Domain Randomization
Imagenet

Figure 2. Effect of different backbones on average seen task performance (237 classes, 100k pre-training images). Best viewed in color.

resnet18 resnet50 resnet101
Num Classes used for Pretraining

76

78

80

82

84

86

88

Do
wn

st
re

am
 fi

ne
tu

ne
 A

cc
ur

ac
y

Eval : Full Network Finetuning. Average downstream performance

Task2Sim
Domain Randomization
Imagenet

resnet18 resnet50 resnet101
Num Classes used for Pretraining

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Do
wn

st
re

am
 li

ne
va

l A
cc

ur
ac

y

Eval : Linear Probing. Average downstream performance

Task2Sim
Domain Randomization
Imagenet

Figure 3. Effect of different backbones on average unseen task performance (237 classes, 100k pre-training images). Best viewed in color.

with different backbones and for all of them Task2Sim per-
formance is competitive with Imagenet pre-training and is
much better than Domain Randomization. We also see
that typically methods improve average downstream per-
formance with the use of a larger backbone in the classi-
fier. Moving from Resnet-50 to Resnet-101, Task2Sim per-
formance breaks this trend and is lower indicating that the
larger backbone could overfit in this case. This might be
expected since Task2Sim was trained to optimize the per-
formance of a Resnet-50 backbone.

C.2. Task2Sim Results—Linear Probing

Figure 4 shows the downstream accuracy with linear
probing for different seen and unseen datasets where pre-
training dataset has 100k images from all 237 classes.
These complement Figures 3 and 4 in the main paper, where
downstream evaluation used full network finetuning.

C.3. Varying Pre-training Data Size

Linear Probing. Figures 5, 6 and 7 are counterparts (with
downstream evaluation done with linear probing) of Figures
6, 7 and 8 in the main paper respectively. We see that pri-
marily similar findings as the main paper hold and in Fig-
ure 5, different backbones improve at a similar rate with
more classes (and images for pre-training). In Figure 6,
we see that both methods of synthetic pre-training improve

their features with more object models, with Domain Ran-
domization improving at a slightly higher rate.

In Figure 7 we see some differences: There is a more
severe saturating behavior of downstream performance,
which even decreases by a little after a certain point for
the synthetic pre-training data. This is likely because the
feature extractor overfits to the pre-training task and a lin-
ear classifier on these features cannot perform as well.
Both from Figure 5 and from the curve for Imagenet-1K
in Figure 7 we see that this saturating/overfitting behavior
is somewhat alleviated by more classes in pre-training data.
Another observation of note in Figure 7 is that the feature
extractor pre-trained on Domain Randomization starts over-
fitting before it matches the performance of Task2Sim. With
Fig 8 in the main paper, we mentioned that with more im-
ages a non-adaptive approach like domain randomization
could improve its performance faster and sometimes equal
a task-adaptive approach like Task2Sim. Figure 7 indicates
that although a non-adaptive approach may improve faster,
it may not always match the performance of its adaptive
counterpart.

Unseen Tasks. Figures 9, 10 and 11 show the effect of the
above variations averaged over unseen tasks. We can see
that similar trends hold in this case, as in the case of seen
datasets.



Ske
tch

Omnig
lot

Che
stX

SV
HN

Ka
oko

re DTD

Flo
wers

10
2

Dee
pW

ee
ds

Re
sis

c45 ISI
C

Crop
Dise

ase

Eu
roS

AT

Datasets

0

20

40

60

80

Do
wn

st
re

am
 A

cc
ur

ac
y

Task2Sim
Random params
Domain Randomization
Imagenet

CUB AID
Pac

sC
Pac

sS
USP

S

Che
stX

-P

Cact
usA

eri
al

FM
D

Datasets

20

40

60

80

100

Do
wn

st
re

am
 A

cc
ur

ac
y

Task2Sim
Random params
Domain Randomization
Imagenet

Figure 4. Performance of Task2Sim vs baselines on 12 seen tasks and 8 unseen tasks for 237 class / 100k image pre-training datasets
evaluated with linear probing. Best viewed in color.

25 50 100 150 200
Num Classes used for Pretraining

40

45

50

55

60

65

70

Do
wn

st
re

am
 li

ne
va

l A
cc

ur
ac

y

Eval : Linear Probing. Average downstream performance

Task2Sim
Domain Randomization
Imagenet

Figure 5. Avg performance with linear probing over 12 seen
tasks at different number of classes for pre-training. All methods
improve performance at similar rates with the addition of more
classes.

1/4 1/3 1/2 1
Fraction of Objects used for Pretraining

35

40

45

50

55

60

65

Do
wn

st
re

am
 A

cc
ur

ac
y

Eval : Linear Probing. Average Downstream Performance

Task2Sim
Domain Randomization

Figure 6. Avg performance with linear probing over 12 seen tasks
at different number of object meshes used per category for generat-
ing synthetic pretraining data. Both methods of synthetic data gen-
eration improve performance with addition of more objects with
Domain Randomization improving at a slightly higher rate.

50k 100k 200k 500k 1M
Num Imgs for Pretraining

35

40

45

50

55

60

65

70

75

Do
wn

st
re

am
 A

cc
ur

ac
y

Eval : Linear Probing. Average Downstream Performance

Task2Sim
Domain Randomization
Imagenet 237
Imagenet-1K

Figure 7. Task2Sim performance (avg over 12 seen tasks) vs other
methods using linear probing for evaluation at different number
of images for pretraining. Task2Sim is highly effective at fewer
images. Increasing the number of images improves performance
for all methods. Towards higher number of images in the case
of linear probing we see methods not only reach a saturation but
also exhibit some overfitting to pre-training data. Also, Domain
Randomization stops improving in this case (evaluation with linear
probing) before it can match Task2Sim performance.

C.4. Comparison with very large scale pretraining
(CLIP).

CLIP [22] pre-trains on 400M image-text pairs. Such
large datasets when curated from the web, are bound to
have privacy and other ethical concerns, as discussed in the
main paper. CLIP pre-training is also much more expen-
sive than its counterparts using our synthetic data. We con-
ducted an experiment finetuning a Resnet-50 model using
pre-trained weights from CLIP on our tasks, while noting
that this CLIP pre-trained Resnet-50 is different from the
standard model used by us and uses more parameters (38M
in CLIP Resnet50 vs 25M in standard Resnet50). The re-
sult was 77.33% avg. accuracy on seen tasks and 91.56%
avg. accuracy on unseen tasks, which is comparable to the



best Task2Sim performance (79.10% over seen tasks and
91.50% over unseen tasks).

D. Synthetic Image Generation
We used Three-D-World (TDW) [7] for synthetic image

generation. It is a platform built using the Unity3D en-
gine, and besides a python interface, provides asset bundles
which include 3D object models, interactive 3D scenes, and
HDRI skyboxes (360◦ images of real scenes accompanied
with lighting information). TDW is available under a BSD
2-Clause ”Simplified” License.

For our implementation, we used all 2322 object mod-
els from 237 different classes available in TDW. We use a
generator that imports one object into a simple scene with
an HDRI-skybox background. It then, changes different
properties of the scene/object/camera based on 8 simulation
parameters as mentioned in Section 4.1 of the main paper.
Whenever different variations corresponding to a simulation
parameter are to be included, values are chosen uniformly
at random within an appropriate range (via a careful choice
of the extremes). Figure 8 has 8 rows corresponding to each
of the simulation parameters used for Task2Sim. Each row
shows using 5 images, the variations corresponding to its
specific simulation parameter.

Generating 1M images using our generator with all 2322
objects, takes around 12 hours on an Nvidia Tesla-V100
GPU. Given the number of objects we used in our imple-
mentation, a bottleneck in image generation is the speed of
loading object meshes into Unity3D. Hence, we used a sub-
set of 780 objects from 100 classes with relatively simpler
meshes, for generating the data used for training Task2Sim.
The 8 parameters we used result in a total of 28 = 256 dif-
ferent possibilities and so we pre-generated these 256 sets
of 40k images each for faster and smoother training of the
Task2Sim model. Each of these 256 sets took ∼30 mins to
generate on a Tesla-V100 GPU.

E. Training and Evaluation
We based our implementation of different classifiers for

pre-training and downstream evaluation on pytorch-image-
models [27]. For all experiments except those in Ap-
pendix C.1, we used a Resnet-50 backbone for our classifier.
For all datasets while pre-training, we used the following
parameters : we trained for 100 epochs using an AdamW
optimizer, using a learning rate 0.001 and a batch size of
1024. The learning rate used a linear warmup for 20 epochs
and a cosine annealing schedule following warmup. We use
regularization methods like label-smoothing, cutmix [29]
and mixup [30] following a training strategy from [27]. We
used image augmentation in the form of RandAugment [6]
while pre-training.

For downstream evaluation, we followed a procedure

Category Dataset Train Size Test Size Classes

Natural
CropDisease [18] 43456 10849 38
Flowers [20] 1020 6149 102
DeepWeeds [21] 12252 5257 9
CUB [24] 5994 5794 200

Satellite EuroSAT [8] 18900 8100 10
Resisc45 [2] 22005 9495 45
AID [28] 6993 3007 30
CactusAerial [16] 17500 4000 2

Symbolic Omniglot [14] 9226 3954 1623
SVHN [19] 73257 26032 10
USPS [10] 7291 2007 10

Medical ISIC [5] 7007 3008 7
ChestX [26] 18090 7758 7
ChestXPneumonia [12] 5216 624 2

Illustrative Kaokore [23] 6568 821 8
Sketch [25] 35000 15889 1000
PACS-C [15] 2107 237 7
PACS-S [15] 3531 398 7

Texture DTD [4] 3760 1880 47
FMD [31] 1400 600 10

Table 2. Number of classes in each downstream task and number
of images in each training and test split.

similar to [11]. For both evaluations using linear probing
and full-network finetuning, we used 50 epochs of train-
ing using an SGD optimizer with learning rate decayed by a
tenth at 25 and 37 epochs. No additional regularizers or data
augmentation approaches were used. For each downstream
task, we did a coarse hyperparameter grid-search over learn-
ing rate ∈ {10−5, 10−4, 10−3, 10−2}, optimizer weight de-
cay ∈ {0, 10−5} and training batch size ∈ {32, 128}. We
found by comparing backbones pre-trained on Imagenet and
a large synthetic set generated with Domain Randomiza-
tion, that with the above grid, for each specific downstream
task and evaluation method, a particular set of hyperparam-
eters worked best irrespective of the pre-training data. This
was found using a separate validation split created from the
downstream training set with 30% of the examples. Given
this finding, we fixed these hyperparameters for a given
downstream task and evaluation method for all remaining
experiments.

F. Details of Downstream Tasks
Table 2 shows the number of classes in each of the 20

downstream tasks we used. It also shows the number of
images in the training and test splits for each.

G. Limitations
In this paper, we constrained our demonstration to a

relatively low number of datasets and simulation parame-
ters, limited by data generation, pre-training and evaluation
speed. If these processes can be made more efficient, in



Cam Distance 

Focus Blur

Background

Light Intensity 

Materials

Light Direction 

Light Color 

Obj Rotation 

Figure 8. Examples of variations using different simulation parameters. Best viewed in color and under zoom.



25 50 100 150 200
Num Classes used for Pretraining

76

78

80

82

84

86

88

90

Do
wn

st
re

am
 fi

ne
tu

ne
 A

cc
ur

ac
y

Eval : Full Network Finetuning. Average downstream performance

Task2Sim
Domain Randomization
Imagenet

25 50 100 150 200
Num Classes used for Pretraining

65

70

75

80

85

Do
wn

st
re

am
 li

ne
va

l A
cc

ur
ac

y

Eval : Linear Probing. Average downstream performance

Task2Sim
Domain Randomization
Imagenet

Figure 9. Downstream performance (avg over 8 unseen tasks) with different number of classes for pre-training. Best viewed in color.

1/4 1/3 1/2 1
Fraction of Objects used for Pretraining

74

76

78

80

82

84

86

88

Do
wn

st
re

am
 A

cc
ur

ac
y

Eval : Full Network Finetuning. Average Downstream Performance

Task2Sim
Domain Randomization

1/4 1/3 1/2 1
Fraction of Objects used for Pretraining

60

65

70

75

80

Do
wn

st
re

am
 A

cc
ur

ac
y

Eval : Linear Probing. Average Downstream Performance

Task2Sim
Domain Randomization

Figure 10. Downstream performance (avg over 8 unseen tasks) with different number of objects for pre-training. Best viewed in color.

future work, we can expect to use more simulation parame-
ters (with possibly more discrete options or even real-valued
ranges), and use more datasets for training Task2Sim, al-
lowing it to be more effective in deployment as a practical
application.

H. Societal Impact

In the introduction, we discussed model pre-training us-
ing large real image datasets was what paved the way for
a gamut of transfer learning research. Using real images
is however riddled with curation costs and others concerns
around privacy, copyright, ethical usage, etc. The fact that
downstream performance on average correlates positively
with the size of pre-training data, created a race for curat-
ing bigger datasets. Corporations with large resources are
able to invest in such large-scale curation and create datasets
for their exclusive use (e.g. JFT-300M [3, 9], or Instagram-
3.5B [17]), which are unavailable to a range of research on
downstream applications.

Using synthetic data for pre-training can drastically re-
duce these costs, because potentially infinite images can be
rendered once 3D models and scenes are available, by vary-
ing various simulation parameters. In this paper, we demon-
strated that the optimal use of such a simulation engine
can be found in restricting certain variations, and that dif-

ferent restrictions benefit different downstream tasks. Our
Task2Sim approach, can be used as the basis for a pre-
training data generator, which as an end-user application
can allow research on a wide range of downstream applica-
tions to have access to the benefits of pre-training on large-
scale scale data. This does not create any direct impacts on
average individuals, but could do so through the advance-
ment in downstream applications. One particular case, as
an example, could be the advancement in visual recognition
systems in the medical domain, possibly making the diag-
nosis of illnesses faster and cheaper.

References
[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash

Ravichandran, Subhransu Maji, Charless C Fowlkes, Stefano
Soatto, and Pietro Perona. Task2vec: Task embedding for
meta-learning. In ICCV, 2019. 1

[2] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sens-
ing image scene classification: Benchmark and state of the
art. Proceedings of the IEEE, 105(10):1865–1883, 2017. 5

[3] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 7

[4] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the



50k 100k 200k 500k 1M
Num Imgs for Pretraining

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Do
wn

st
re

am
 A

cc
ur

ac
y

Eval : Full Network Finetuning. Average Downstream Performance

Task2Sim
Domain Randomization
Imagenet 237
Imagenet-1K
Scratch

50k 100k 200k 500k 1M
Num Imgs for Pretraining

60

65

70

75

80

85

Do
wn

st
re

am
 A

cc
ur

ac
y

Eval : Linear Probing. Average Downstream Performance

Task2Sim
Domain Randomization
Imagenet 237
Imagenet-1K

Figure 11. Downstream performance (avg over 8 unseen tasks) with different number of images for pre-training. Best viewed in color.

wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3606–3613, 2014. 5

[5] Noel Codella, Veronica Rotemberg, Philipp Tschandl,
M Emre Celebi, Stephen Dusza, David Gutman, Brian
Helba, Aadi Kalloo, Konstantinos Liopyris, Michael
Marchetti, et al. Skin lesion analysis toward melanoma
detection 2018: A challenge hosted by the interna-
tional skin imaging collaboration (isic). arXiv preprint
arXiv:1902.03368, 2019. 5

[6] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020. 5

[7] Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf,
James Traer, Julian De Freitas, Jonas Kubilius, Abhishek
Bhandwaldar, Nick Haber, Megumi Sano, et al. Threed-
world: A platform for interactive multi-modal physical sim-
ulation. In NeurIPS, Datasets Track, 2021. 5

[8] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 12(7):2217–2226, 2019. 5

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 7

[10] Jonathan J. Hull. A database for handwritten text recogni-
tion research. IEEE Transactions on pattern analysis and
machine intelligence, 16(5):550–554, 1994. 5

[11] Ashraful Islam, Chun-Fu Chen, Rameswar Panda, Leonid
Karlinsky, Richard Radke, and Rogerio Feris. A broad study
on the transferability of visual representations with con-
trastive learning. arXiv preprint arXiv:2103.13517, 2021.
5

[12] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Car-
olina CS Valentim, Huiying Liang, Sally L Baxter, Alex
McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al.
Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell, 172(5):1122–1131, 2018.
5

[13] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network represen-

tations revisited. In International Conference on Machine
Learning, pages 3519–3529. PMLR, 2019. 1

[14] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338,
2015. 5

[15] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542–5550, 2017. 5

[16] Efren López-Jiménez, Juan Irving Vasquez-Gomez,
Miguel Angel Sanchez-Acevedo, Juan Carlos Herrera-
Lozada, and Abril Valeria Uriarte-Arcia. Columnar cactus
recognition in aerial images using a deep learning approach.
Ecological Informatics, 52:131–138, 2019. 5

[17] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens Van Der Maaten. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European con-
ference on computer vision (ECCV), pages 181–196, 2018.
7

[18] Sharada P Mohanty, David P Hughes, and Marcel Salathé.
Using deep learning for image-based plant disease detection.
Frontiers in plant science, 7:1419, 2016. 5

[19] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Ng. Reading digits in natural
images with unsupervised feature learning. NIPS Workshop
on Deep Learning and Unsupervised Feature Learning 2011,
pages 722–729, 2011. 5

[20] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729. IEEE, 2008. 5

[21] Alex Olsen, Dmitry A. Konovalov, Bronson Philippa, Peter
Ridd, Jake C. Wood, Jamie Johns, Wesley Banks, Benjamin
Girgenti, Owen Kenny, James Whinney, Brendan Calvert,
Mostafa Rahimi Azghadi, and Ronald D. White. Deep-
Weeds: A Multiclass Weed Species Image Dataset for Deep
Learning. Scientific Reports, 9(2058), 2 2019. 5

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-



ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 4

[23] Yingtao Tian, Chikahiko Suzuki, Tarin Clanuwat, Mikel
Bober-Irizar, Alex Lamb, and Asanobu Kitamoto. Kaokore:
A pre-modern japanese art facial expression dataset. arXiv
preprint arXiv:2002.08595, 2020. 5

[24] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical re-
port, 2011. 5

[25] Haohan Wang, Songwei Ge, Eric P. Xing, and Zachary C.
Lipton. Learning robust global representations by penaliz-
ing local predictive power. arXiv preprint arXiv:1905.13549,
2019. 5

[26] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo-
hammadhadi Bagheri, and Ronald M Summers. Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks
on weakly-supervised classification and localization of com-
mon thorax diseases. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2097–
2106, 2017. 5

[27] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 5

[28] Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang
Bai, Yanfei Zhong, Liangpei Zhang, and Xiaoqiang Lu. Aid:
A benchmark data set for performance evaluation of aerial
scene classification. IEEE Transactions on Geoscience and
Remote Sensing, 55(7):3965–3981, 2017. 5

[29] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6023–6032, 2019. 5

[30] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 5

[31] Yide Zhang, Yinhao Zhu, Evan Nichols, Qingfei Wang,
Siyuan Zhang, Cody Smith, and Scott Howard. A
poisson-gaussian denoising dataset with real fluorescence
microscopy images. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11710–11718, 2019. 5

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	. Task2Vec
	. Similarity between Learned Features
	. Additional Results
	. Effect of Different Backbones
	. Task2Sim Results—Linear Probing
	. Varying Pre-training Data Size
	. Comparison with very large scale pretraining (CLIP).

	. Synthetic Image Generation
	. Training and Evaluation
	. Details of Downstream Tasks
	. Limitations
	. Societal Impact

