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Abstract

Pre-training models on Imagenet or other massive
datasets of real images has led to major advances in com-
puter vision, albeit accompanied with shortcomings related
to curation cost, privacy, usage rights, and ethical issues.
In this paper, for the first time, we study the transferability
of pre-trained models based on synthetic data generated by
graphics simulators to downstream tasks from very different
domains. In using such synthetic data for pre-training, we
find that downstream performance on different tasks are fa-
vored by different configurations of simulation parameters
(e.g. lighting, object pose, backgrounds, etc.), and that there
is no one-size-fits-all solution. It is thus better to tailor syn-
thetic pre-training data to a specific downstream task, for
best performance. We introduce Task2Sim, a unified model
mapping downstream task representations to optimal sim-
ulation parameters to generate synthetic pre-training data
for them. Task2Sim learns this mapping by training to find
the set of best parameters on a set of “seen” tasks. Once
trained, it can then be used to predict best simulation pa-
rameters for novel “unseen” tasks in one shot, without re-
quiring additional training. Given a budget in number of
images per class, our extensive experiments with 20 di-
verse downstream tasks show Task2Sim’s task-adaptive pre-
training data results in significantly better downstream per-
formance than non-adaptively choosing simulation param-
eters on both seen and unseen tasks. It is even competitive
with pre-training on real images from Imagenet.

1. Introduction

Using large-scale labeled (like ImageNet [9]) or weakly-
labeled (like JFT-300M [5, 18], Instagram-3.5B [34])
datasets collected from the web has been the go-to approach
for pre-training classifiers for downstream tasks with a rela-
tive scarcity of labeled data. Prior works have demonstrated
that as we move to bigger datasets for pre-training, down-
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Figure 1. We explore how synthetic data can be effectively used
for training models that can transfer to a wide range of downstream
tasks from various domains. Is a universal pre-trained model for
all downstream tasks, the best approach?

stream accuracy improves on average [34, 56]. However,
large-scale real image datasets bear the additional cost of
curating labels, in addition to other concerns like privacy or
copyright. Furthermore, large datasets like JFT-300M and
Instagram-3.5B are not publicly available posing a bottle-
neck in reproducibility and fair comparison of algorithms.

Synthetic images generated via graphics engines provide
an alternative quelling a substantial portion of these con-
cerns. With 3D models and scenes, potentially infinite im-
ages can be generated by varying various scene or image-
capture parameters. Although synthetic data has been used
for transfer learning in various specialized tasks [2,48,55,
59], there has not been prior research dedicated to its trans-
ferability to a range of different recognition tasks from dif-
ferent domains (see Figure 1). In conducting this first of its
kind (to the best of our knowledge) study, we first ask the
question : in synthetic pretraining for different downstream



Pretraining Data Downstream Accuracy

Variations EuroSAT SVHN Sketch DTD
Pose 87.01 28.49 37.89 37.39
+Lighting 88.57 32.36 38.81 40.32
+Blur 90.20 35.58 3553  37.66
+Materials 84.54 44.84 30.81  38.51

+Background 80.44 29.93 14.60  32.39

Table 1. Downstream task accuracies using linear probing with
a Resnet-50 backbone pretrained on synthetic datasets with dif-
ferent varying parameters (successively added). We see different
simulation parameters have different effects on downstream tasks.

classification tasks, does a one-size-fits-all solution (i.e., a
universal pre-trained model for all tasks) work well?

With graphics engines, we can control various simula-
tion parameters (lighting, pose, materials, etc.). So, in
an experiment, we introduced more variations successively
from different parameters into a pretraining dataset of 100k
synthetic images from 237 different classes (as many cat-
egories as are available in Three-D-World [11]). We pre-
trained a ResNet-50 [16] on these, and evaluated this back-
bone with linear probing on different downstream tasks.
The results are in Table 1. We see that some parameters like
random object materials result in improved performance for
some downstream tasks like SVHN and DTD, while hurting
performance for other tasks like EuroSAT and Sketch. In
general different pre-training data properties seem to favor
different downstream tasks.

To maximize the benefit of pre-training, different opti-
mal simulation parameters can be found for each specific
downstream task. Because of the combinatorially large set
of different simulation parameter configurations, a brute
force search is out of the question. However, this might still
suggest that some, presumably expensive, learning process
is needed for each downstream task for an optimal synthetic
image set for pre-training. We show this is not the case.

We introduce Task2Sim, a unified model that maps
a downstream task representation to optimal simulation
parameters for pre-training data generation to maximize
downstream accuracy. Using vector representations for a set
of downstream tasks (in the form of Task2Vec [1]), we train
Task2Sim to find and thus learn a mapping to optimal pa-
rameters for each task from the set. Once trained on this set
of “seen” tasks, Task2Sim can also use Task2Vec represen-
tations of novel “unseen” tasks to predict simulation param-
eters that would be best for their pre-training datasets. This
efficient one-shot prediction for novel tasks is of significant
practical value, if developed as an end-user application that
can automatically generate and provide pre-training data,
given some downstream examples.

Our extensive experiments using 20 downstream classi-
fication datasets show that on seen tasks, given a number
of images per category, Task2Sim’s output parameters gen-

erate pre-training datasets that are much better for down-
stream performance than approaches like domain random-
ization [2, 25, 74] that are not task-adaptive. Moreover, we
show Task2Sim also generalizes well to unseen tasks, main-
taining an edge over non-adaptive approaches while being
competitive with Imagenet pre-training.

In summary, (i) We address a novel, and very practical,
problem—how to optimally leverage synthetic data to task-
adaptively pre-train deep learning models for transfer to di-
verse downstream tasks. To the best of our knowledge, this
is the first time such a problem is being addressed in trans-
fer learning research. (ii) We propose Task2Sim, a unified
parametric model that learns to map Task2Vec representa-
tions of downstream tasks to simulation parameters for op-
timal pre-training. (iii) Task2Sim can generalize to novel
“unseen” tasks, not encountered during training, a feature
of significant practical value as an application. (iv) We pro-
vide a thorough analysis of the behavior of downstream ac-
curacy with different sizes of pre-training data (in number
of classes, object-meshes or simply images) and with dif-
ferent downstream evaluation methods.

2. Related Work

Training with Synthetic Data. Methods that learn from
synthetic data have been extensively studied since the early
days of computer vision [31, 39]. In recent years, many
approaches that rely on synthetic data representations have
been proposed for image classification [11, 36], object de-
tection [43, 44], semantic segmentation [50, 67], action
recognition [49, 61], visual reasoning [22], and embodied
perception [27,53,71]. Unlike previous work, we focus on
a different problem: how to build task-adaptive pre-trained
models from synthetic data that can transfer to a wide range
of downstream datasets from various domains.

Synthetic to Real Transfer. The majority of methods pro-
posed to bridge the reality gap (between simulation and
real data) are based on domain adaptation [8]. These
include reconstruction-based techniques, using encoder-
decoder models or GANs to improve the realism of syn-
thetic data [19, 47, 54], discrepancy-based methods, de-
signed to align features between the two domains [51, 75],
and adversarial approaches, which rely on a domain dis-
criminator to encourage domain-independent feature learn-
ing [13,45,60]. Contrasting from these techniques, our
work aims at building pre-trained models from synthetic
data and does not assume the same label set for source and
target domains. The most prevalent approach in a setting
similar to ours, is domain randomization [2, 25, 44,59, 74],
which learns pre-trained models from datasets generated
by randomly varying simulator parameters. In contrast,
Task2Sim learns simulator parameters to generate synthetic
datasets that maximize transfer learning performance.
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Figure 2. Illustration of our proposed approach. Given a batch of tasks represented by Task2Vec representations, our approach
(Task2Sim) aims to map these representations to optimal simulation parameters for generating a dataset of synthetic images. The down-
stream classifier’s accuracy for the set of tasks is then used as a reward to update Task2Sim’s parameters. Once trained, Task2Sim can be
used not only for “seen” tasks but also can be used in one-shot to generate simulation parameters for novel “unseen” tasks.

Optimization of Simulator Parameters. Recently, a few
approaches have been proposed to learn synthetic data gen-
eration by optimizing simulator parameters [3, 26, 52, 73].
SPIRAL [12], AVO [33] and Attr. Desc. [74] minimize the
distance between distributions of simulated data and real
data. Learning to Simulate [52] optimizes simulator param-
eters using policy gradients that maximize validation accu-
racy for a specific task, while Auto-Sim [3] speeds up the
search process using a differentiable approximation of the
objective. Meta-Sim [10,23] learns to modify attributes ob-
tained from probabilistic scene grammars for data genera-
tion. These methods are specifically tailored to applications
in autonomous driving, whereas our goal is to transfer syn-
thetic data representations to a wide range of downstream
tasks. Notably, our proposed approach is significantly dif-
ferent from previous methods, as it maps task representa-
tions to simulation parameters through a unified paramet-
ric model, enabling one-shot synthetic data generation, even
for unseen tasks, without requiring expensive training.

Conditional Computation. Albeit not apparent, our
method is also related to dynamic neural network that adap-
tively change computation depending on input [15]. These
methods have been effectively used to skip computation in
deep neural networks conditioned on the input [62, 66, 69],
perform adaptive fine-tuning [!4], and dynamically allo-
cate computation across frames for efficient video analy-
sis [35,70]. In particular, Adashare [57] learns different
computational pathways for each task within a single multi-
task network model, with the goal of improving efficiency
and minimizing negative interference in multi-task learning.
Analogously, our approach learns different data simulation
pathways (by adaptively deciding which rendering parame-
ters to use) for each task, using a single parametric model,
with the goal of generating task-specific pre-training data.

3. Proposed Approach

Our goal is to create a unified model that maps task rep-
resentations (e.g., obtained using task2vec [1]) to simula-
tion parameters, which are in turn used to render synthetic
pre-training datasets for not only tasks that are seen during
training, but also novel tasks. This is a challenging prob-
lem, as the number of possible simulation parameter con-
figurations is combinatorially large, making a brute-force
approach infeasible when the number of parameters grows.

3.1. Overview

Figure 2 shows an overview of our approach. Dur-
ing training, a batch of “seen” tasks is provided as input.
Their task2vec vector representations are fed as input to
Task2Sim, which is a parametric model (shared across all
tasks) mapping these downstream task2vecs to simulation
parameters, such as lighting direction, amount of blur, back-
ground variability, etc. These parameters are then used
by a data generator (in our implementation, built using the
Three-D-World platform [11]) to generate a dataset of syn-
thetic images. A classifier model then gets pre-trained on
these synthetic images, and the backbone is subsequently
used for evaluation on specific downstream task. The clas-
sifier’s accuracy on this task is used as a reward to update
Task2Sim’s parameters. Once trained, Task2Sim can also
be used to efficiently predict simulation parameters in one-
shot for “unseen” tasks that it has not encountered during
training.

3.2. Task2Sim Model

Let us denote Task2Sim’s parameters with 6. Given the
task2vec representation of a downstream task € X as in-
put, Task2Sim outputs simulation parameters a € 2. The
model consists of M output heads, one for each simula-



tion parameter. In the following discussion, just as in our
experiments, each simulation parameter is discretized to a
few levels to limit the space of possible outputs. Each head
outputs a categorical distribution 7;(x, 8) € A*:, where k;
is the number of discrete values for parameter ¢ € [M],
and A*, a standard k;-simplex. The set of argmax outputs
v(z,0) = {vilv; = argmax ¢, mi,; Vi € [M]} is the set
of simulation parameter values used for synthetic data gen-
eration. Subsequently, we drop annotating the dependence
of 7 and v on # and x when clear.

3.3. Task2Sim Training

Since Task2Sim aims to maximize downstream accuracy
after pre-training, we use this accuracy as the reward in our
training optimization'. Note that this downstream accuracy
is a non-differentiable function of the output simulation pa-
rameters (assuming any simulation engine can be used as
a black box) and hence direct gradient-based optimization
cannot be used to train Task2Sim. Instead, we use REIN-
FORCE [68], to approximate gradients of downstream task
performance with respect to model parameters 6.

Task2Sim’s outputs represent a distribution over “ac-
tions” corresponding to different values of the set of M
simulation parameters. P(a) = [[;c(ns) mi(a;) is the prob-
ability of picking action a = [a;];e[as], under policy m =
[7i]ie[a]- Remember that the output 7 is a function of the
parameters 6 and the task representation . To train the
model, we maximize the expected reward under its policy,
defined as

R= E [R(a)] =) P(a)R(a) 1)

a€eq

where ) is the space of all outputs a and R(a) is the re-
ward when parameter values corresponding to action a are
chosen. Since reward is the downstream accuracy, R(a) €
[0, 100]. Using the REINFORCE rule, we have

VR = E [(Valog P(a) R(a)] @

= E Z Vologm;(a;) | R(a) 3)

a€ef
i€[M]

where the 2nd step comes from linearity of the derivative.
In practice, we use a point estimate of the above expecta-
tion at a sample a ~ (m + €) (e being some exploration
noise added to the Task2Sim output distribution) with a self-
critical baseline following [46]:

VR ~ Z Vologmi(a;) | (R(a) — R(v)) (4

€[ M]

'Note that our rewards depend only on the task2vec input and the output
action and do not involve any states, and thus our problem can be consid-
ered similar to a stateless-RL or contextual bandits problem [29]

where, as a reminder v is the set of the distribution argmax
parameter values from the Task2Sim model heads.

A pseudo-code of our approach is shown in Algorithm 1.
Specifically, we update the model parameters 6 using mini-
batches of tasks sampled from a set of “seen” tasks. Similar
to [41], we also employ self-imitation learning biased to-
wards actions found to have better rewards. This is done by
keeping track of the best action encountered in the learning
process and using it for additional updates to the model, be-
sides the ones in Line 12 of Algorithm 1. Furthermore, we
use the test accuracy of a 5-nearest neighbors classifier op-
erating on features generated by the pretrained backbone as
a proxy for downstream task performance since it is com-
putationally much faster than other common evaluation cri-
teria used in transfer learning, e.g., linear probing or full-
network finetuning. Our experiments demonstrate that this
proxy evaluation measure indeed correlates with, and thus,
helps in final downstream performance with linear probing
or full-network finetuning.

Algorithm 1: Training Task2Sim

1 Input: Set of N “seen” downstream tasks
represented by task2vecs T = {x;|i € [N]}.

2 Given initial Task2Sim parameters 6, and initial
noise level ¢

3 Initialize a,&?ax |i € [N] the maximum reward action
for each seen task

4 fort € [T] do

Set noise level € = <

Sample minibatch 7 of size n from 7

Get Task2Sim output distributions 7(!)|i € [n]

Sample outputs ") ~ 7() 4+ ¢

D-TEN- I

Get Rewards R(a(")) by generating a synthetic
dataset with parameters a(?), pre-training a
backbone on it, and getting the 5-NN
downstream accuracy using this backbone

10 Update o) . if R(a®) > R(a%)am)

11 Get point estimates of reward gradients dr(*) for

each task in minibatch using Eq. (4)

Zie[n] dr®
n

12 97570 — 01+
13 | forj e [T,]do
// Self Imitation

14 Get reward gradient estimates drg? from
Eq. (4) fora <+ aS,’)az
2icin drii)
15 Orj < Op 1 + =—2
16 end for
17 Qt — 0t,Ts,
18 end for

19 Output: Trained model with parameters 0.




4. Experiments
4.1. Details

Downstream Tasks. We used a set of 20 classification tasks
for our experiments with Task2Sim. We used the 12 tasks
from [21] as the set of “seen” tasks for our model and a
separate set of 8 tasks as the “unseen” set. All our tasks can
be broadly categorized into the following 6 classes (S:seen,
U:unseen):

e Natural Images: CropDisease(S) [37], Flowers102(S)
[40], DeepWeeds(S) [42], CUB(U) [63]

e Aerial Images: EuroSAT(S) [17], Resisc45(S) [4],
AID(U) [72], CactusAerial(U) [32]

* Symbolic Images: SVHN(S) [38], Omniglot(S) [28],
USPS(U) [20]

* Medical Images: ISIC(S) [7], ChestX(S) [65], ChestX-
Pneumonia(U) [24]

¢ Ilustrative Images: Kaokore(S) [58], Sketch(S) [64],
Pacs-C(U), Pacs-S(U) [30]

 Texture Images: DTD(S) [6], FMD(U) [76]

Task2Sim details. We used a Resnet-18 probe network
to generate 9600-dimensional Task2Vec representations of
downstream tasks. The Task2Sim model is a multi-layer
perceptron with 2 hidden layers, having ReLU activations.
The model shares its first two layers for all M heads, and
branches after that. It is trained for 1000 epochs on seen
tasks, with a batch-size 4 and 5 self-imitation steps (i.e.
n =4,Ty = 5and T = 1000). We used a Resnet-50 model
for pre-training and downstream evaluation for Task2Sim’s
rewards. Complete details are in the supplementary.

Synthetic Data Generation. We used Three-D-World
(TDW) [11] for synthetic image generation. The platform
provides 2322 different object models from 237 different
classes, 57 of which overlap with Imagenet. Using TDW,
we generated synthetic images of single objects from the
aforementioned set (see Figure 1 for examples).

In this paper, we experimented with a parameterization
of the pretraining dataset where M = 8and k; = 2V ¢ €
[M] (using terminology from Section 3). The 8 parameters
are:

e Object Rotation: If 1, multiple poses of an object
are shown in the dataset, else, an object appears in a
canonical pose in each image.

¢ Object Distance (from camera): If 1, object distance
from the camera is varied randomly within a certain
range, else, it is kept fixed.

* Lighting Intensity: If 1, intensity of the main lighting
source (sun-like point light source at a distance) is var-
ied, else it is fixed.

 Lighting Color: If 1, RGB color of the main lighting
source is varied, else it is fixed.

* Lighting Direction : If 1, the direction of the main light
source is varied, else it is a constant.

e Focus Blur: If 1, camera focus point and aperture are
randomly perturbed to induce blurriness in the image,
else, all image contents are always in focus.

* Background: If 1, background of the object changes in
each image, else it is held fixed.

e Materials: If 1, in each image, each component of an
object is given a random material out of 140 different
materials, else objects have their default materials.

Hence in our experiments, for each of the above 8 param-
eters, Task2Sim decided whether or not different variations
of it, would exhibit in the dataset. For speed of dataset gen-
eration while training Task2Sim, we used a subset of 780
objects with simple meshes, from 100 different categories
and generated 400 images per category for pre-training.

4.2. Task2Sim Results

Baselines. We compared Task2Sim’s downstream perfor-
mance with the following baselines (pre-training datasets):
(1) Random : For each downstream dataset, chooses a ran-
dom 8-length bit string as the set of simulation parame-
ters. (2) Domain Randomization : Uses a 1 in each sim-
ulation parameter, thus using all variations from simulation
in each image. (3) Imagenet : Uses a subset of Imagenet
with equal number of classes and images as other base-
lines®. (4) Scratch : Does not involve any pre-training of
the classifier’s feature extractor, training a randomly initial-
ized classifier, with only downstream task data.
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Figure 3. Performance of Task2Sim vs baselines on 12 seen tasks

for 237 class / 100k image pre-training datasets evaluated with
full-network finetuning. Best viewed in color.

Performance on Seen Tasks. Table 2 shows accuracies av-
eraged over 12 seen downstream tasks for Task2Sim and all
baselines using different evaluation methods for a Resnet-
50 backbone. For the last two columns, we included all

2We also compared pre-training using Imagenet with 1K classes and an
equal number of images, but this was poorer on average in downstream
performance than the subset with fewer classes. Tables 2 and 3 and Fig-
ures 3 and 4 do not include it for succinctness



Average Downstream Accuracy — Seen Tasks

100 classes / 40k images 237 classes / 100k images

Pretraining Dataset 5NN  Linear Probing Finetuning | Linear Probing  Finetuning
Scratch - - 64.85 - 64.85
Random 25.30 54.06 70.77 55.14 72.18
Domain Randomization | 19.42 35.31 62.96 45.31 68.51
Imagenet* 28.91 63.12 74.26 68.44 77.61
Task2Sim 30.46 62.70 75.34 62.71 76.87

Table 2. Comparing the downstream accuracy on seen tasks for the Task2Sim chosen pretraining dataset and other baselines. Simulation
parameters found on seen tasks by Task2Sim generates synthetic pretraining data that is better for downstream tasks than other approaches
like using Random simulation parameters or Domain Randomization. Pre-training with Task2Sim’s data is also competitive with pre-
training on images from Imagenet. *Imagenet has been subsampled to the same number of classes and images as indicated at the top of the

column. boldface=highest, underline=2"¢

highest in column.

Average Downstream Accuracy — Unseen Tasks

100 classes / 40k images 237 classes / 100k images

Pretraining Dataset 5NN  Linear Probing Finetuning | Linear Probing  Finetuning
Scratch - - 76.86 - 76.86
Random 51.80 74.68 83.97 74.11 83.49
Domain Randomization | 45.06 56.96 72.64 69.12 78.15
Imagenet* 54.12 75.47 84.78 81.33 87.84
Task2Sim 53.06 79.25 87.05 82.05 88.77

Table 3. Comparing the downstream accuracy on unseen tasks for the Task2Sim chosen pretraining dataset and other baselines. Task2Sim
also generalizes well to “unseen” tasks, not encountered during training, maintaining an edge over other synthetic data, while still being
competitive with Imagenet. *Imagenet subsampled as in Table 2. boldface=highest, underline=2"% highest in column.
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Figure 4. Performance of Task2Sim vs baselines on 8 unseen tasks
for 237 class / 100k image pre-training datasets evaluated with
full-network finetuning. Best viewed in color.

objects of TDW from 237 categories, and kept the num-
ber of images at roughly 400 per class, resulting in about
100k images total, regenerating a new dataset with the sim-
ulation parameters corresponding to the different synthetic
image generation methods. On average, over the 12 seen
tasks, simulation parameters that Task2Sim finds are better
than Domain Randomization and Random selection and are
competitive with Imagenet pre-training, both for the subset
of classes that Task2Sim is trained using, and when a larger
set of classes is used. Figure 3 shows accuracies for the
12 seen datasets for different methods, on the 237 category

100k image pre-training set.

Performance on Unseen Tasks. Table 3 shows average
downstream accuracy over 8 unseen datasets, of a Resnet-50
pretrained on different datasets. We see that Task2Sim gen-
eralizes well, and is still better than Domain Randomization
and Random simulation parameter selection. Moreover, it
is marginally better on average than Imagenet pretraining
for these tasks. Figure 4 shows the accuracies from the last
column of Table 3 over the 8 individual unseen tasks.

4.3. Analysis

Task2Sim QOutputs. Figure 5 shows the output distribution
from the trained Task2Sim model for different seen and un-
seen tasks. Each output shows the probability assigned by
the model to the output 1 in that particular simulation pa-
rameter. From the outputs, we see the model determines
that in general for the set of tasks considered, it is better
to see a single pose of objects rather than multiple poses,
and that it is better to have scene lighting intensity varia-
tions in different images than have lighting of constant in-
tensity in all images. In general, adding material variabil-
ity was determined to be worse for most datasets, except
for SVHN. Comparing predictions for seen vs unseen tasks,
we see that Task2Sim does its best to generalize to unseen
tasks by relating them to the seen tasks. For e.g., outputs
for ChestXPneumonia are similar to ChestX, while outputs



of CactusAerial are similar to those of EuroSAT, both being
aerial/satellite image datasets. A similar trend is also seen
in PacsS and Sketch both of which contain hand-sketches,
and for CUB and CropDisease, both natural image datasets.

Another inspection shows Task2Sim makes decisions
that are quite logical for certain tasks. For instance,
Task2Sim turns off the “Light Color” parameter for CUB.
Here, color plays a major role in distinguishing different
birds, thus needing a classifier representation that should
not be invariant to color changes. Indeed, from Figure 9,
we see that the neighbors of Task2Sim are of similar colors.

Effect of Number of Pretraining Classes. In Figure 6, we
plot the average accuracy with full network finetuning on
the 12 seen downstream tasks. On the x-axis, we vary the
number of classes used for pre-training, with 1000 images
per class on average (200 classes=200k images). We see all
pre-training methods improve with more classes (and corre-
spondingly more images) at about similar rates. Task2Sim
stays better than Domain Randomization and competitive
with (about 2% shy of) pre-training with an equivalent sub-
set (in number of classes and images) of Imagenet.

Effect of Number of Different Objects Per Class. In
TDW, we have 2322 object meshes from 237 different cat-
egories. In Figure 7, we vary the number of object meshes
used per category. The point right-most on the x-axis has
200k images with all objects used, and moving to the left,
the number of images reduces proportionately as a fraction
of these objects are used (the number of categories being
the same). We find that with increasing number of differ-
ent objects used for each category, Domain Randomization
improves downstream performance at a slightly higher rate
than our proposed Task2Sim.

Effect of Number of Pretraining Images. In Figure 8, we
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Figure 5. Task2Sim outputs for different seen and unseen tasks.
Values shown are predicted probability of value 1 in the specific
simulation parameters. Best viewed in color.
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ization improving at a slightly higher rate.
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Figure 8. Task2Sim performance (avg over 12 seen tasks) vs other
methods at different number of images for pretraining. Task2Sim
is highly effective at fewer images. Increasing the number of im-
ages improves performance for all methods, reaching a saturation
at a high enough number. See Section 4.3 for more discussion.

show average downstream task accuracy, for the 12 seen
tasks, with different number of images used for pretrain-
ing. All methods, except Imagenet-1K and Scratch, use 237
image categories, with synthetic datasets using all available
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Figure 9. 3 nearest neighbors of three test examples from the CUB dataset based on different pretrained feature representations (top:
Task2Sim, middle: domain randomization, bottom: ImageNet*). Neighbors with a blue box share the same class with the anchor image on
the left. For Task2Sim, similar to Imagenet, the neighbors are of similar color which suggests that the pretrained representation captures
color similarity which can be crucial for identifying different bird species. Best viewed in color.

object models. Imagenet-237 is a subset of Imagenet-1K
containing 237 categories that were randomly picked. We
see Task2Sim is highly effective in the regime where fewer
images are available for pre-training, and is even slightly
better than pre-training with Imagenet at 50k images. It
maintains its advantage over non-adaptive pretraining up
to a significant extrapolation of 500k images, having only
trained using smaller datasets (of 100 classes and 40k im-
ages). At 1M images, it is still competitive with Imagenet
pre-training and is much better than training from scratch.

We also observe that all methods improve when more
pre-training images are available, although the rate of
improvement decreases as we move along positive X-
direction. Initially, Domain Randomization improves at a
higher rate than Task2Sim and at 1M pretraining images,
matches its performance. This is likely because at a higher
number of images, even when there are all variations pos-
sible from simulation in each image (corresponding to Do-
main Randomization), the deep feature extractor grows ro-
bust to the variations which may not add any value to the
representation for specific downstream tasks.

Our hypothesis is that at a fixed number of categories
there may exist some point in number of pre-training images
when the above robustness can be good enough to match
Task2Sim’s downstream performance. With a 237-category
limit from TDW and using the set of variations from our 8
chosen parameters, | M images seems to be this point. How-
ever, as the number of classes increases, this point shifts
towards higher number of images. As evidence, consider
Figure 6, where we see that as more classes of objects are
added with more data, different methods improve at similar
rates. Moving further along positive X, if this holds with
more classes, Task2Sim maintains its edge over Domain
Randomization even at higher numbers of images. This
suggests a non-adaptive pre-training method like Domain
Randomization has potential to be as effective on average as
Task2Sim, but only at the cost of more pre-training images.

However, this cost would keep increasing as pre-training
data encompasses more object categories, and would be un-
known without experimentation.

For additional results and discussion, we refer readers to
the supplementary.

5. Conclusion

We saw the approach that is optimal for downstream
performance in using synthetic data for pre-training is to
specifically adapt the synthetic data to different downstream
tasks. In this paper, we parameterized our synthetic data via
different simulation parameters from graphics engines, and
introduced Task2Sim, which learns to map downstream task
representations to optimal simulation parameters for syn-
thetic pretraining data for the task. We showed Task2Sim
can be trained on a set of “seen” tasks and can then gen-
eralize to novel “unseen” tasks predicting parameters for
them in one-shot, making it highly practical for synthetic
pre-training data generation. While a large portion of con-
temporary representation learning research focuses on self-
supervision to avoid using labels, we hope our demonstra-
tion with Task2Sim motivates further research in using sim-
ulated data from graphics engines for this purpose, with fo-
cus on adaptive generation for downstream application.

Acknowledgements. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. FA8750-19-C-1001. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the Defense Advanced Re-
search Projects Agency (DARPA). This work was also sup-
ported by Army Research Office Grant W911NF2110246,
National Science Foundation grants CCF-2007350 and
CCF-1955981, and the Hariri institute at Boston University.
We would also like to thank developers of TDW—Seth Al-
ter, Abhishek Bhandwaldar and Jeremy Schwartz, for their
assistance with the platform and its use.



References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash
Ravichandran, Subhransu Maji, Charless C Fowlkes, Stefano
Soatto, and Pietro Perona. Task2vec: Task embedding for
meta-learning. In /CCV, 2019. 2, 3

Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun
Majumdar, Devi Parikh, Dhruv Batra, and Stefan Lee. Sim-
to-real transfer for vision-and-language navigation. In CoRL,
2021. 1,2

Harkirat Singh Behl, Atilim Giines Baydin, Ran Gal,
Philip HS Torr, and Vibhav Vineet. Autosimulate:(quickly)
learning synthetic data generation. In ECCV, 2020. 3

Gong Cheng, Junwei Han, and Xiaogiang Lu. Remote sens-
ing image scene classification: Benchmark and state of the
art. Proceedings of the IEEE, 105(10):1865-1883, 2017. 5
Frangois Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251-1258, 2017. 1

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3606-3613, 2014. 5
Noel Codella, Veronica Rotemberg, Philipp Tschandl,
M Emre Celebi, Stephen Dusza, David Gutman, Brian
Helba, Aadi Kalloo, Konstantinos Liopyris, Michael
Marchetti, et al. Skin lesion analysis toward melanoma
detection 2018: A challenge hosted by the interna-
tional skin imaging collaboration (isic). arXiv preprint
arXiv:1902.03368, 2019. 5

Gabriela Csurka. Domain adaptation for visual applications:
A comprehensive survey. arXiv preprint arXiv:1702.05374,
2017. 2

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. Teee, 2009. 1

Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-
sim2: Unsupervised learning of scene structure for synthetic
data generation. In ECCV, 2020. 3

Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf,
James Traer, Julian De Freitas, Jonas Kubilius, Abhishek
Bhandwaldar, Nick Haber, Megumi Sano, et al. Threed-
world: A platform for interactive multi-modal physical sim-
ulation. In NeurIPS, Datasets Track, 2021. 2, 3,5

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Ali
Eslami, and Oriol Vinyals. Synthesizing programs for im-
ages using reinforced adversarial learning. In /CML, 2018.
3

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, Frangois Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The Journal of Machine Learning
Research, 17(1):2096-2030, 2016. 2

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grau-
man, Tajana Rosing, and Rogerio Feris. Spottune: transfer
learning through adaptive fine-tuning. In CVPR, 2019. 3

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A sur-
vey. arXiv preprint arXiv:2102.04906, 2021. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770778, 2016. 2

Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. /EEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 12(7):2217-2226, 2019. 5

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In
ICML, 2018. 2

Jonathan J. Hull. A database for handwritten text recogni-
tion research. [IEEE Transactions on pattern analysis and
machine intelligence, 16(5):550-554, 1994. 5

Ashraful Islam, Chun-Fu Chen, Rameswar Panda, Leonid
Karlinsky, Richard Radke, and Rogerio Feris. A broad study
on the transferability of visual representations with con-
trastive learning. arXiv preprint arXiv:2103.13517, 2021.
5

Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning. In CVPR, 2017.
2

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,
Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,
and Sanja Fidler. Meta-sim: Learning to generate synthetic
datasets. In ICCV, 2019. 3

Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Car-
olina CS Valentim, Huiying Liang, Sally L Baxter, Alex
McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al.
Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell, 172(5):1122-1131, 2018.
5

Rawal Khirodkar, Donghyun Yoo, and Kris Kitani. Domain
randomization for scene-specific car detection and pose esti-
mation. In WACV, 2019. 2

Seung Wook Kim, Jonah Philion, Antonio Torralba, and
Sanja Fidler. Drivegan: Towards a controllable high-quality
neural simulation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5820-5829, 2021. 3

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d
environment for visual ai. arXiv preprint arXiv:1712.05474,
2017. 2

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B
Tenenbaum. Human-level concept learning through proba-



[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

bilistic program induction. Science, 350(6266):1332—-1338,
2015. 5

John Langford and Tong Zhang. Epoch-greedy algorithm
for multi-armed bandits with side information. Advances in
Neural Information Processing Systems (NIPS 2007), 20:1,
2007. 4

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542-5550, 2017. 5

James J Little and Alessandro Verri. Analysis of differential
and matching methods for optical flow. 1988. 2

Efren Lopez-Jiménez, Juan Irving Vasquez-Gomez,
Miguel Angel Sanchez-Acevedo, Juan Carlos Herrera-
Lozada, and Abril Valeria Uriarte-Arcia. Columnar cactus
recognition in aerial images using a deep learning approach.
Ecological Informatics, 52:131-138, 2019. 5

Gilles Louppe, Joeri Hermans, and Kyle Cranmer. Adversar-
ial variational optimization of non-differentiable simulators.
In AISTATS, 2019. 3

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens Van Der Maaten. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European con-
ference on computer vision (ECCV), pages 181-196, 2018.
1

Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna
Sattigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, and
Rogerio Feris. Ar-net: Adaptive frame resolution for effi-
cient action recognition. In ECCV, 2020. 3

Hiroaki Mikami, Kenji Fukumizu, Shogo Murai, Shuji
Suzuki, Yuta Kikuchi, Taiji Suzuki, Shin-ichi Maeda, and
Kohei Hayashi. A scaling law for synthetic-to-real transfer:
How much is your pre-training effective? arXiv preprint
arXiv:2108.11018, 2021. 2

Sharada P Mohanty, David P Hughes, and Marcel Salathé.
Using deep learning for image-based plant disease detection.
Frontiers in plant science, 7:1419, 2016. 5

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Ng. Reading digits in natural
images with unsupervised feature learning. NIPS Workshop
on Deep Learning and Unsupervised Feature Learning 2011,
pages 722-729, 2011. 5

Ramakant Nevatia and Thomas O Binford. Description
and recognition of curved objects. Artificial intelligence,
8(1):77-98, 1977. 2

Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722-729. IEEE, 2008. 5

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee.
Self-imitation learning. In International Conference on Ma-
chine Learning, pages 3878-3887. PMLR, 2018. 4

Alex Olsen, Dmitry A. Konovalov, Bronson Philippa, Peter
Ridd, Jake C. Wood, Jamie Johns, Wesley Banks, Benjamin
Girgenti, Owen Kenny, James Whinney, Brendan Calvert,

[43]

(44]

(45]

[46]

(47]

(48]

[49]

(50]

[51]

(52]

(53]

(54]

[55]

[56]

Mostafa Rahimi Azghadi, and Ronald D. White. Deep-
Weeds: A Multiclass Weed Species Image Dataset for Deep
Learning. Scientific Reports, 9(2058), 2 2019. 5

Xingchao Peng, Baochen Sun, Karim Ali, and Kate Saenko.
Learning deep object detectors from 3d models. In ICCV,
2015. 2

Aayush Prakash, Shaad Boochoon, Mark Brophy, David
Acuna, Eric Cameracci, Gavriel State, Omer Shapira, and
Stan Birchfield. Structured domain randomization: Bridg-
ing the reality gap by context-aware synthetic data. In ICRA,
2019. 2

Zhongzheng Ren and Yong Jae Lee. Cross-domain self-
supervised multi-task feature learning using synthetic im-
agery. In CVPR, 2018. 2

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret
Ross, and Vaibhava Goel. Self-critical sequence training for
image captioning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7008-7024,
2017. 4

Stephan R Richter, Hassan Abu AlHaija, and Vladlen
Koltun.  Enhancing photorealism enhancement.  arXiv
preprint arXiv:2105.04619, 2021. 2

Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In European conference on computer vision, pages
102-118. Springer, 2016. 1

Cesar Roberto de Souza, Adrien Gaidon, Yohann Cabon, and
Antonio Manuel Lopez. Procedural generation of videos to
train deep action recognition networks. In CVPR, 2017. 2
German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In CVPR, 2016. 2

Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. Be-
yond sharing weights for deep domain adaptation. [EEE
transactions on pattern analysis and machine intelligence,
41(4), 2018. 2

Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker.
Learning to simulate. In /CLR, 2019. 3

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A plat-
form for embodied ai research. In /CCV, 2019. 2

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua
Susskind, Wenda Wang, and Russell Webb. Learning
from simulated and unsupervised images through adversarial
training. In CVPR, 2017. 2

Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas.
Render for cnn: Viewpoint estimation in images using cnns
trained with rendered 3d model views. In Proceedings of the
IEEFE International Conference on Computer Vision, pages
2686-2694, 2015. 1

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In Proceedings of the IEEE international
conference on computer vision, pages 843-852, 2017. 1



[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

[71]

[72]

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. Adashare: Learning what to share for efficient deep
multi-task learning. In NeurIPS, 2020. 3

Yingtao Tian, Chikahiko Suzuki, Tarin Clanuwat, Mikel
Bober-Irizar, Alex Lamb, and Asanobu Kitamoto. Kaokore:
A pre-modern japanese art facial expression dataset. arXiv
preprint arXiv:2002.08595, 2020. 5

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to the
real world. In IROS, 2017. 1,2

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In CVPR,
2017. 2

Giil Varol, Ivan Laptev, Cordelia Schmid, and Andrew Zis-
serman. Synthetic humans for action recognition from un-
seen viewpoints. International Journal of Computer Vision,
129(7):2264-2287, 2021. 2

Andreas Veit and Serge Belongie. Convolutional networks
with adaptive inference graphs. In ECCV, 2018. 3

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical re-
port, 2011. 5

Haohan Wang, Songwei Ge, Eric P. Xing, and Zachary C.
Lipton. Learning robust global representations by penaliz-
ing local predictive power. arXiv preprint arXiv:1905.13549,
2019. 5

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo-
hammadhadi Bagheri, and Ronald M Summers. Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks
on weakly-supervised classification and localization of com-
mon thorax diseases. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2097—
2106, 2017. 5

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. Skipnet: Learning dynamic routing in
convolutional networks. In ECCV, 2018. 3

Zhonghao Wang, Mo Yu, Yunchao Wei, Rogerio Feris, Jin-
jun Xiong, Wen-mei Hwu, Thomas S Huang, and Honghui
Shi. Differential treatment for stuff and things: A simple
unsupervised domain adaptation method for semantic seg-
mentation. In CVPR, 2020. 2

Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 8(3):229-256, 1992. 4

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks.
In CVPR, 2018. 3

Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,
and Larry S Davis. Adaframe: Adaptive frame selection for
fast video recognition. In CVPR, 2019. 3

Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra
Malik, and Silvio Savarese. Gibson env: Real-world percep-
tion for embodied agents. In CVPR, 2018. 2

Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang
Bai, Yanfei Zhong, Liangpei Zhang, and Xiaogiang Lu. Aid:

(73]

[74]

[75]

[76]

A benchmark data set for performance evaluation of aerial
scene classification. IEEE Transactions on Geoscience and
Remote Sensing, 55(7):3965-3981, 2017. 5

Dawei Yang and Jia Deng. Learning to generate 3d train-
ing data through hybrid gradient. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 779-789, 2020. 3

Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto
Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing
Gong. Domain randomization and pyramid consistency:
Simulation-to-real generalization without accessing target
domain data. In ICCV, 2019. 2,3

Yang Zhang, Philip David, Hassan Foroosh, and Boqing
Gong. A curriculum domain adaptation approach to the se-
mantic segmentation of urban scenes. IEEE transactions on
pattern analysis and machine intelligence, 42(8):1823-1841,
2019. 2

Yide Zhang, Yinhao Zhu, Evan Nichols, Qingfei Wang,
Siyuan Zhang, Cody Smith, and Scott Howard. A
poisson-gaussian denoising dataset with real fluorescence
microscopy images. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

11710-11718, 2019. 5



