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Abstract

Learning to recognize actions from only a handful of la-
beled videos is a challenging problem due to the scarcity
of tediously collected activity labels. We approach this
problem by learning a two-pathway temporal contrastive
model using unlabeled videos at two different speeds lever-
aging the fact that changing video speed does not change
an action. Specifically, we propose to maximize the simi-
larity between encoded representations of the same video
at two different speeds as well as minimize the similarity
between different videos played at different speeds. This
way we use the rich supervisory information in terms of
‘time’ that is present in otherwise unsupervised pool of
videos. With this simple yet effective strategy of manipulat-
ing video playback rates, we considerably outperform video
extensions of sophisticated state-of-the-art semi-supervised
image recognition methods across multiple diverse bench-
mark datasets and network architectures. Interestingly, our
proposed approach benefits from out-of-domain unlabeled
videos showing generalization and robustness. We also per-
form rigorous ablations and analysis to validate our ap-
proach. Project page: https://cvir.github.io/TCL/.

1. Introduction

Supervised deep learning approaches have shown re-
markable progress in video action recognition [7, 15, 16,
17, 36, 49]. However, being supervised, these models are
critically dependent on large datasets requiring tedious hu-
man annotation effort. This motivates us to look beyond the
supervised setting as supervised methods alone may not be
enough to deal with the volume of information contained in
videos. Semi-supervised learning approaches use structural
invariance between different views of the same data as a
source of supervision for learning useful representations. In
recent times, semi-supervised representation learning mod-
els [10, 29, 38, 50] have performed very well even surpass-
ing its supervised counterparts in case of images [22, 47].
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Figure 1: Comparison of top-1 accuracy for TCL (Ours) with
Pseudo-Label [35] and FixMatch [47] baselines trained with
different percentages of labeled training data. We evaluate the
efficacy of the approaches in terms of the least proportion of la-
beled data required to surpass the fully supervised [36] perfor-
mance (shown with the red dotted line). With only 33% and 15%
of labeled data, our proposed TCL framework surpasses the su-
pervised approaches in Mini-Something-V2 [23] and Jester [37]
datasets respectively. The two other compared methods fail to
reach the accuracy of the fully supervised approach with such
small amount of labeled data. (Best viewed in color.)

Notwithstanding their potential, semi-supervised video
action recognition has received very little attention. Triv-
ially extending the image domain approaches to videos
without considering the rich temporal information may not
quite bridge the performance gap between the semi and the
fully supervised learning. But, in videos, we have another
source of supervision: time. We all know that an action rec-
ognizer is good if it can recognize actions irrespective of
whether the actions are performed slowly or quickly. Re-
cently, supervised action recognition has benefited a lot by
using differently paced versions of the same video during
training [17, 54]. Motivated by the success of using slow
and fast versions of videos for supervised action recognition
as well as by the success of the contrastive learning frame-
works [26, 41], we propose Temporal Contrastive Learn-
ing (TCL) for semi-supervised action recognition in videos
where consistent features representing both slow and fast
versions of the same videos are learned.

Starting with a model trained with limited labeled data,
we present a two-pathway model that processes unlabeled
videos at two different speeds and finds their representa-
tions. Though played at two different speeds, the videos
share the same semantics. Thus, similarity between these



representations are maximized. Likewise, the similarity be-
tween the representations of different videos are minimized.
We achieve this by minimizing a modified NT-Xent con-
trastive loss [10, 50] between these videos with different
playback rates. While minimizing a contrastive loss helps
to produce better visual representations by learning to be in-
variant to different views of the data, it ignores information
shared among samples of same action class as the loss treats
each video individually. To this end, we propose a new per-
spective of contrastive loss between neighborhoods. Neigh-
borhoods are compact groups of unlabeled videos with high
class consistency. In absence of ground-truth labels, groups
are formed by clustering videos with same pseudo-labels
and are represented by averaging the representations of the
constituent videos. Contrastive objective between groups
formed off the two paths explores the underlying class con-
cept that traditional NT-Xent loss among individual video
instances does not take into account. We term the con-
trastive loss considering only individual instances as the
instance-contrastive loss and the same between the groups
as the group-contrastive loss respectively.

We perform extensive experiments on four standard
datasets and demonstrate that TCL achieves superior per-
formance over extended baselines of state-of-the-art image
domain semi-supervised approaches. Figure 1 shows com-
parison of TCL with Pseudo-Label [35] and FixMatch [47]
trained using different percentages of labeled training data.
Using the same backbone network (ResNet-18), TCL needs
only 33% and 15% of labeled data in Mini-Something-
V2 [9] and Jester [37] respectively to reach the performance
of the fully supervised approach [36] that uses 100% la-
beled data. On the other hand, the two compared methods
fail to reach the accuracy of the fully supervised approach
with such small amount of labeled data. Likewise, we ob-
serve as good as 8.14% and 4.63% absolute improvement in
recognition performance over the next best approach, Fix-
Match [47] using only 5% labeled data in Mini-Something-
V2 [9] and Kinetics-400 [32] datasets respectively. In a new
realistic setting, we argue that unlabeled videos may come
from a related but different domain than that of the labeled
data. For instance, given a small set of labeled videos from a
third person view, our approach is shown to benefit from us-
ing only first person unlabeled videos on Charades-Ego [44]
dataset, demonstrating the robustness to domain shift in the
unlabeled set. To summarize, our key contributions include:

• First of all, we treat the time axis in unlabeled videos
specially, by processing them at two different speeds
and propose a two-pathway temporal contrastive semi-
supervised action recognition framework.
• Next, we identify that directly employing con-

trastive objective instance-wise on video representa-
tions learned with different frame-rates may miss cru-
cial information shared across samples of same in-

herent class. A novel group-contrastive loss is pio-
neered to couple discriminative motion representation
with pace-invariance that significantly improves semi-
supervised action recognition performance.

• We demonstrate through experimental results on four
datasets, TCL’s superiority over extended baselines of
successful image-domain semi-supervised approaches.
The versatility and robustness of our approach in case
of training with unlabeled videos from a different do-
main is shown along with in-depth ablation analysis
pinpointing the role of the different components.

2. Related Work

Action Recognition. Action recognition is a challenging
problem with great application potential. Conventional ap-
proaches based on deep neural networks are mostly built
over a two-stream CNN based framework [46], one to pro-
cess a single RGB frame and the other for optical flow input
to analyze the spatial and temporal information respectively.
Many variants of 3D-CNNs such as C3D [49], I3D [7] and
ResNet3D [27], that use 3D convolutions to model space
and time jointly, have also been introduced for action recog-
nition. SlowFast network [17] employs two pathways for
recognizing actions by processing a video at both slow and
fast frame rates. Recent works also utilize 2D-CNNs for
efficient video classification by using different temporal ag-
gregation modules such as temporal averaging in TSN [52],
bag of features in TRN [61], channel shifting in TSM [36],
depthwise convolutions in TAM [15]. Despite promising
results on common benchmarks, these models are critically
dependent on large datasets that require careful and tedious
human annotation effort. In contrast, we propose a simple
yet effective temporal contrastive learning framework for
semi-supervised action recognition that alleviates the data
annotation limitation of supervised methods.

Semi-Supervised Learning. Semi-supervised learning
(SSL) has been studied from multiple aspects (see re-
views [8]). Various strategies have been explored e.g.,
generative models [40, 42], self-training using pseudo-
labels [1, 24, 35] and consistency regularization [2, 4, 5, 34,
39, 48, 55]. Leveraging self-supervised learning like rota-
tion prediction [20] and image transformations [13] is also
another recent trend for SSL [60]. While there has been
tremendous progress in semi-supervised image classifica-
tion, SSL for action recognition is still a novel and rarely
addressed problem. Iosifidis et al. [31], first utilize tradi-
tional Action Bank for action representation and then uses
a variant of extreme learning machine for semi-supervised
classification. The work most related to ours is [47] which
first generates confident one-hot labels for unlabelled im-
ages and then trains the model to be consistent across dif-
ferent forms of image augmentations. While this has re-
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Figure 2: Illustration of our Temporal Contrastive Learning (TCL) Framework. Our approach consists of base and auxiliary pathways
that share the same weights. Base pathway accepts video frames sampled at a higher rate while the auxiliary pathway takes in frames at
a lower framerate. At first, the base network is trained using limited labeled data. Subsequently, the auxiliary pathway comes into
picture for the unlabeled samples by encouraging video representations to match in both pathways in absence of labels. This is done by
maximizing agreement between the outputs of the two pathways for a video while minimizing the same for different videos. In addition,
originally unlabeled videos with high semantic similarity are grouped by pseudo-labels assigned to them. To exploit the high consistency
and compactness of group members, the average representations of groups with same pseudo-label in different pathways are made similar
while that between the varying groups are made maximally different. Two separate contrastive losses (ref Sections 3.2.2 and 3.2.3) are
used for this purpose. Given a video at test time, only the base network is used to recognize the action. (Best viewed in color.)

cently achieved great success, the data augmentations for
generating different transformations are limited to transfor-
mations in the image space and fail to leverage the tempo-
ral information present in videos. We differ from [47] as
we propose a temporal contrastive learning framework for
semi-supervised action recognition by modeling temporal
aspects using two pathways at different speeds instead of
augmenting images. We further propose a group-wise con-
trastive loss in addition to instance-wise contrastive loss for
learning discriminative features for action recognition.
Contrastive Learning. Contrastive learning [10, 11, 19,
28, 30, 33, 38, 50, 53] is becoming increasingly attractive
due to its great potential to leverage large amount of un-
labeled data. The essence of contrastive learning lie in
maximizing the similarity of representations among posi-
tive samples while encouraging discrimination for negative
samples. Some recent works have also utilized contrastive
learning [21, 25, 41, 43, 58] for self-supervised video rep-
resentation learning. Spatio-temporal contrastive learning
using different augmentations for learning video features is
presented in [41]. Speed of a video is also investigated for
self-supervised learning [3, 51, 59] unlike the problem we
consider in this paper. While our approach is inspired by
these, we focus on semi-supervised action recognition in
videos, where our goal is to learn consistent features repre-
senting two different frame rates of the unlabeled videos.

3. Methodology

In this section, we present our novel semi-supervised ap-
proach to efficiently learn video representations. First we
briefly discuss the problem description and then describe
our framework and its components in detail.

3.1. Problem Setup

Our aim is to address semi-supervised action recogni-
tion where only a small set of videos (Dl) has labels, but a
large number of unlabeled videos (Du) are assumed to be
present alongside. The set Dl , {V i, yi}Nl

i=1 comprises
of Nl videos where the ith video and the corresponding
activity label is denoted by V i and yi respectively. For a
dataset of videos with C different activities, yi is often as-
sumed to be an element of the label set Y = {1, 2, · · · , C}.
Similarly, the unlabeled set Du , {U i}Nu

i=1 comprises of
Nu(�Nl) videos without any associated labels. We use
the unlabeled videos at two different frame rates and refer
to them as fast and slow videos. The fast version of the
video U i is represented as a collection of M frames i.e.,
U i
f = {F i

f,1, F
i
f,2, · · · , F i

f,M}. Likewise, the slow version
of the same is represented as U i

s = {F i
s,1, F

i
s,2, · · · , F i

s,N}
whereN < M . The frames are sampled from the video fol-
lowing Wang et. al [52] where a random frame is sampled
uniformly from consecutive non-overlapping segments.



3.2. Temporal Contrastive Learning

As shown in Figure 2, our ‘Temporal Contrastive Learn-
ing (TCL)’ framework processes the input videos in two
pathways, namely base and auxiliary pathways. The fast
version of the videos are processed by base while the slow
versions are processed by the auxiliary pathway. Both path-
ways share same neural backbone (denoted by g(.)). Differ-
ent stages of training in TCL framework are described next.

3.2.1 Supervised Training Stage

The neural network backbone is initially trained using only
the small labeled data Dl by passing it through the base
branch. Depending on whether the backbone involves
2D [36, 52] or 3D convolution [7, 27] operations, the repre-
sentation (g(V i)) of the video V i used in our framework is
average of the frame logits or the logits from the 3D back-
bone respectively. We minimize the standard supervised
cross-entropy loss (Lsup) on the labeled data as follows.

Lsup = −
C∑

c=1

(yi)c log(g(V
i))c (1)

3.2.2 Instance-Contrastive Loss

Equipped with an initial backbone trained with limited su-
pervision, our goal is to learn a model that can use a large
pool of unlabeled videos for better activity understanding.
To this end, we use temporal co-occurrence of unlabeled
activities at multiple speeds as a proxy task and enforce
this with a pairwise contrastive loss. Specifically, we adjust
the frame sampling rate to get videos with different speeds.
Let us consider a minibatch with B unlabeled videos. The
model is then trained to match the representation g(U i

f ) of
the comparatively faster version of the video (U i) with that
(g(U i

s)) of the slower version. g(U i
f ) and g(U i

s) forms the
positive pair. For rest of B − 1 videos, g(U i

f ) and g(Uk
p )

form negative pairs where representation of kth video can
come from either of the pathways (i.e., p ∈ {f, s}). As
different videos forming the negative pairs, have different
content, the representation of different videos in either of
the pathways are pushed apart. This is achieved by employ-
ing a contrastive loss (Lic) as follows.

Lic(U
i
f , U

i
s)=−log

h
(
g(U i

f ),g(U
i
s)
)

h
(
g(U i

f ),g(U
i
s)
)
+

B∑
k=1

p∈{s,f}

1{k 6=i}h
(
g(U i

f ),g(U
k
p )
)
(2)

where h(u,v) = exp
(

u>v
||u||2||v||2 /τ

)
is the exponential of

cosine similarity measure and τ is the temperature hyperpa-
rameter. The final instance-contrastive loss is computed for
all positive pairs, i.e., both (U i

f , U
i
s) and (U i

s, U
i
f ) across

minibatch. The loss function encourages to decrease the
similarity not only between different videos in two path-
ways but also between different videos across both of them.

Figure 3: Advantage of group-contrastive loss over instance-
contrastive loss. A contrastive objective between instances may
try to push different instances of same action apart (right), while
forming groups of videos with same activity class avoids such in-
advertent competition (left). In absence of true labels, such group-
ing is done by the predicted pseudo-labels. (Best viewed in color.)

3.2.3 Group-Contrastive Loss

Directly applying contrastive loss between different video
instances in absence of class-labels does not take the high
level action semantics into account. As illustrated in Fig-
ure 3, such a strategy can inadvertently learn different rep-
resentations for videos containing same actions. We employ
contrastive loss among groups of videos with similar actions
where relations within the neighborhood of different videos
are explored. Specifically, each unlabeled video U i in each
of the two pathways are assigned pseudo-labels that corre-
spond to the class having the maximum activation. Let ŷif
and ŷis denote the pseudo-labels of the video U i in the fast
and the slow pathways respectively. Videos having the same
pseudo-label in a minibatch form a group in each pathway
and the average of the representations of constituent videos
provides the representation of the group as shown below.

Rl
p =

B∑
i=1

1{ŷi
p=l}g(U

i
p)

T
(3)

where 1 is an indicator function that evaluates to 1 for the
videos with pseudo-label equal to l ∈ Y in each pathway
p∈{f, s}. T is the number of such videos in the minibatch.

Considering the high class consistency among two
groups with same label in two pathways, we require these
groups to give similar representations in the feature space.
Thus, in the group-contrastive objective, all pairs (Rl

f , R
l
s)

act as positive pairs while the negative pairs are the pairs
(Rl

f , R
m
p ) with p∈ {f, s} and m∈ Y \ l such that the con-

stituent groups are different in either of the pathways. The
group-contrastive loss involving these pairs is,

Lgc(R
l
f ,R

l
s)=−log

h(Rl
f ,R

l
s)

h(Rl
f ,R

l
s) +

C∑
m=1

p∈{s,f}

1{m 6=l}h(Rl
f ,R

m
p )

(4)

Similar to instance-contrastive loss, group-contrastive
loss is also computed for all positive pairs - both (Rl

f , R
l
s)



and (Rl
s, R

l
f ) across the minibatch. Overall, the loss func-

tion for training our model involving the limited labeled
data and the unlabeled data is,

L = Lsup + γ ∗ Lic + β ∗ Lgc (5)

where, γ and β are weights of the instance-contrastive and
group-contrastive losses respectively.

3.3. TCL with Pretraining and Finetuning

Self-supervised pretraining has recently emerged as a
promising alternative, which not only avoids huge anno-
tation effort but also is better and robust compared to its
supervised counterpart in many visual tasks [14, 56, 62].
Motivated by this, we adopt self-supervised pretraining to
initialize our model with very minimal change in the frame-
work. Specifically, we employ self-supervised pretraining
at the beginning by considering the whole of the labeled and
the unlabeled data Dl ∪ Du as unlabeled data only and us-
ing instance-contrastive loss Lic to encourage consistency
between representations learned in the two pathways (ref.
Eq. 2). These weights are then used to initialize the base
and the auxiliary pathways before our approach commences
for semi-supervised learning of video representations. For
effective utilization of unlabeled data, we also finetune
the base pathway with pseudo-labels [35] generated at the
end of our contrastive learning, which greatly enhances
the discriminabilty of the features, leading to improve-
ment in recognition performance. We empirically show
that starting with the same amount of labeling, both self-
supervised pretraining and finetuning with pseudo-labels
(Pretraining→TCL →Finetuning) benefits more compared
to the same after limited supervised training only.

4. Experiments
In this section, we conduct extensive experiments to

show that our TCL framework outperforms many strong
baselines on several benchmarks including one with domain
shift. We also perform comprehensive ablation experiments
to verify the effectiveness of different components in detail.

4.1. Experimental Setup

Datasets. We evaluate our approach using four datasets,
namely Mini-Something-V2 [9], Jester [37], Kinetics-
400 [32] and Charades-Ego [44]. Mini-Something-V2 is a
subset of Something-Something V2 dataset [23] containing
81K training videos and 12K testing videos across 87 action
classes. Jester [37] contains 119K videos for training and
15K videos for validation across 27 annotated classes for
hand gestures. Kinetics-400 [32] is one of the most popular
large-scale benchmark for video action recognition. It con-
sists of 240K videos for training and 20K videos for valida-
tion across 400 action categories, with each video lasting 6-
10 seconds. Charades-Ego [44] contains 7,860 untrimmed

egocentric videos of daily indoors activities recorded from
both third and first person views. The dataset contains
68,536 temporal annotations for 157 action classes. We use
a subset of the third person videos from Charades-Ego as
the labeled data while the first person videos are considered
as unlabeled data to show the effectiveness of our approach
under domain shift in the unlabeled data. More details about
the datasets are included in supplementary material.

Baselines. We compare our approach with the follow-
ing baselines and existing semi-supervised approaches from
2D image domain extended to video data. First, we con-
sider a supervised baseline where we train an action clas-
sifier having the same architecture as the base pathway of
our approach. This is trained using a small portion of
the labeled examples assuming only a small subset of la-
beled examples is available as annotated data. Second, we
compare with state-of-the-art semi-supervised learning ap-
proaches, including Pseudo-Label [35] (ICMLW’13), Mean
Teacher [48] (NeurIPS’17), S4L [60] (ICCV’19), Mix-
Match [5] (NeurIPS’19), and FixMatch [47] (NeurIPS’20).
We use same backbone and experimental settings for all the
baselines (including our approach) for a fair comparison.

Implementation Details. We use Temporal Shift Module
(TSM) [36] with ResNet-18 backbone as the base action
classifier in all our experiments. We further investigate per-
formance of different methods by using ResNet-50 on Mini-
Something-V2 dataset. TSM has recently shown to be very
effective due to its hardware efficiency and lesser computa-
tional complexity. We use uniformly sampled 8 and 4 frame
segments from unlabeled videos as input to the base and the
auxiliary pathways respectively to process unlabeled videos
in our TCL framework. On the other hand, we use only
8 frame segments for labeled videos and compute the final
performance using 8 frame segments in the base pathway
for all the methods. Note that our approach is agnostic to the
backbone architecture and particular values of frame rates.
Following the standard practice [47] in SSL, we randomly
choose a certain percentage of labeled samples as a small
labeled set and discard the labels for the remaining data to
form a large unlabeled set. Our approach is trained with
different percentages of labeled samples for each dataset
(1%, 5% and 10%). We train our models for 400 epochs
where we first train our model with supervised loss Lsup

using only labeled data for 50 epochs. We then train our
model using the combined loss (ref. Eq. 5) for the next 300
epochs. Finally, for finetuning with pseudo-labels, we train
our model with both labeled and unlabeled videos having
pseudo-label confidence more than 0.8 for 50 epochs.

During pretraining, we follow the standard practice in
self-supervised learning [10, 58] and train our model using
all the training videos without any labels for 200 epochs.
We use SGD [6] with a learning rate of 0.02 and momentum
value of 0.9 with cosine learning rate decay in all our experi-



ResNet-18 ResNet-50
Approach 1% 5% 10% 1% 5% 10%
Supervised (8f) 5.98±0.68 17.26±1.17 24.67±0.68 5.69±0.51 16.68±0.25 25.92±0.53
Pseudo-Label [35] (ICMLW’13) 6.46±0.32 18.76±0.77 25.67±0.45 6.66±0.89 18.77±1.18 28.85±0.91
Mean Teacher [48] (NeurIPS’17) 7.33±1.13 20.23±1.59 30.15±0.42 6.82±0.18 21.80±1.54 32.12±2.37
S4L [60] (ICCV’19) 7.18±0.97 18.58±1.05 26.04±1.89 6.87±1.29 17.73±0.26 27.84±0.75
MixMatch [5] (NeurIPS’19) 7.45±1.01 18.63±0.99 25.78±1.01 6.48±0.83 17.77±0.12 27.03±1.66
FixMatch [47] (NeurIPS’20) 6.04±0.44 21.67±0.18 33.38±1.58 6.54±0.71 25.34±2.03 37.44±1.31
TCL (Ours) 7.79±0.57 29.81±0.77 38.61±0.91 7.54±0.32 27.22±1.86 40.70±0.42
TCL w/ Finetuning 8.65±0.76 30.55±1.36 40.06±1.14 8.56±0.31 28.84±1.22 41.68±0.56
TCL w/ Pretraining & Finetuning 9.91±1.84 30.97±0.07 41.55±0.47 9.19±0.43 29.85±1.76 41.33±1.07

Table 1: Performance Comparison in Mini-Something-V2. Numbers show average Top-1 accuracy values with standard deviations
over 3 random trials for different percentages of labeled data. TCL significantly outperforms all the compared methods in both cases.

Jester Kinetics-400
Approach 1% 5% 10% 1% 5%
Supervised (8f) 52.55±4.36 85.22±0.61 90.45±0.33 6.17±0.32 20.50±0.23
Pseudo-Label [35] (ICMLW’13) 57.99±3.70 87.47±0.64 90.96±0.48 6.32±0.19 20.81±0.86
Mean Teacher [48] (NeurIPS’17) 56.68±1.46 88.80±0.44 92.07±0.03 6.80±0.42 22.98±0.43
S4L [60] (ICCV’19) 64.98±2.70 87.23±0.15 90.81±0.32 6.32±0.38 23.33±0.89
MixMatch [5] (NeurIPS’19) 58.46±3.26 89.09±0.21 92.06±0.46 6.97±0.48 21.89±0.22
FixMatch [47] (NeurIPS’20) 61.50±0.77 90.20±0.35 92.62±0.60 6.38±0.38 25.65±0.28
TCL (Ours) 75.21±4.48 93.29±0.24 94.64±0.21 7.69±0.21 30.28±0.13
TCL w/ Finetuning 77.25±4.02 93.53±0.15 94.74±0.25 8.45±0.25 31.50±0.23
TCL w/ Pretraining & Finetuning 82.55±1.94 93.73±0.25 94.93±0.02 11.56±0.22 31.91±0.46

Table 2: Performance Comparison on Jester and Kinetics-400. Numbers show the top-1 accuracy values using ResNet-18
on both datasets. Our approach TCL achieves the best performance across different percentages of labeled data.

ments. Given a mini-batch of labeled samplesBl, we utilize
µ×Bl unlabeled samples for training. We set µ to 3 and τ
to 0.5 in all our experiments. γ and β values are taken to be
9 and 1 respectively, unless otherwise mentioned. Random
scaling and cropping are used as data augmentation during
training (and we further adopt random flipping for Kinetics-
400), as in [36]. Following [36], we use just 1 clip per video
and the center 224×224 crop for evaluation. More imple-
mentation details are included in supplementary material.

4.2. Large-scale Experiments and Comparisons

Tables 1- 3 show performance of different methods on
all four datasets, in terms of average top-1 clip accuracy
and standard deviation over 3 random trials.

Mini-Something-V2. Table 1 shows the performance com-
parison with both ResNet-18 (left half) and ResNet-50
(right half) backbones on Mini-Something-V2. TCL out-
performs the video extensions of all the semi-supervised
image-domain baselines for all three percentages of labeled
training data. The improvement is especially prominent for
low capacity model (ResNet-18) and low data (only 1% and
5% data with labels) regime. Notably, our approach outper-
forms the most recent approach, FixMatch by 1.75% while

training with only 1% labeled data. The improvement is
8.14% for the case when 5% data is labeled. These im-
provements clearly show that our approach is able to lever-
age the temporal information more effectively compared to
FixMatch that focuses on only spatial image augmentations.
Figure 4 shows the classwise improvement over FixMatch
along with the number of labeled training data per class in
the case of 5% labeling. The plot shows that a overwhelm-
ing majority of the activities experienced improvement with
decrease in performance for only 1 class out of 18 having
less than 20 labeled videos per class (right of the figure). For
low labeled-data regime (1% and 5%), a heavier ResNet-
50 model shows signs of overfitting as is shown by slight
drop in performance. On the other hand, using ResNet-50
backbone instead of ResNet-18 is shown to benefit TCL if
the model is fed with more labeled data. Moreover, TCL
with finetuning and pretraining shows further improvement,
leading to best performance in both cases.
Jester. Our approach TCL also surpasses the performance
of existing semi-supervised approaches in Jester as shown
in Table 2 (left). In particular, TCL achieves 10.23% abso-
lute improvement compared to S4L (the next best) in very
low labeled-data regime (1% only). Adding finetuning and
self-supervised pretraining further increases this difference



Figure 4: Change in classwise top-1 accuracy of TCL over Fix-
Match on Mini-Something-V2. Blue bars show the change in
accuracy on 5% labeled scenario, while the red line shows the
number of labeled videos per class (sorted). Compared to Fix-
Match, TCL improves the performance of most classes including
those with less labeled data. (Best viewed in color.)

to 17.57%. Furthermore, TCL with pretraining and finetun-
ing achieves a top-1 accuracy of 94.93% using 10% labeled
data which is only 0.32% lower than the fully supervised
baseline trained using all the labels (95.25%).

Kinetics-400. Table 2 (right) summarizes the results on
Kinetics-400, which is one of the widely used action
recognition datasets consisting of 240K videos across 400
classes. TCL outperforms FixMatch by a margin of 1.31%
and 4.63% on 1% and 5% scenarios respectively, showing
the superiority of our approach on large scale datasets. The
top-1 accuracy achieved using TCLwith finetuning and pre-
training is almost twice better than the supervised approach
when only 1% of the labeled data is used. The results also
show that off-the-shelf extensions of sophisticated state-of-
the-art semi-supervised image classification methods offer
little benefit to action classification on videos.

Charades-Ego. We use third person videos from Charades-
Ego [44] as the target while first person videos form the ad-
ditional unlabeled set. During training, labeled data is taken
only from the target domain while unlabeled data is ob-
tained from both the target and the domain-shifted videos.
To modulate domain shift in unlabeled data, we introduce a
new hyperparameter ρ, whose value denotes the proportion
of target videos in the unlabeled set. For a fixed number of
unlabeled videos |Du|, we randomly select ρ×|Du| videos
from the target while the remaining (1 − ρ)×|Du| are se-
lected from the other domain. Following the standard prac-
tice [12] in this dataset, we first pretrain the model using
Charades [45] and experimented using three different val-
ues of ρ: 1, 0.5, 0 for 10% target data with labels. Table 3
shows the mean Average Precision (mAP) of our method
including the supervised approach, PseudoLabel and Fix-
Match. TCL outperforms both methods by around 1% mAP
for all three ρ values. In the case when all the unlabeled data
is from the shifted domain (ρ=0), the performance of our
approach is even better than the performance of the next
best approach (FixMatch) with ρ = 1 i.e., when all unla-

Approach 10%
Supervised (8f) 17.53 ±0.49

ρ = 1 ρ =0.5 ρ =0
Pseudo-Label [35] (ICMLW’13) 18.00±0.16 17.87±0.14 17.79±0.33
FixMatch [47] (NeurIPS’20) 18.02±0.31 18.00±0.29 17.96±0.25
TCL (Ours) 19.13±0.37 18.95±0.17 18.50±0.95
TCL w/ Finetuning 19.68±0.37 19.58±0.31 19.56±0.82

Table 3: Semi-supervised action recognition under domain
shift (Charades-Ego). Numbers show mean average precision
(mAP) with ResNet-18 backbone across three different propor-
tions of unlabeled data (ρ) between third and first person videos.
TCL achieves the best mAP, even on this challenging dataset.

Supervised: Pulling Hand In
S4L: Pulling Two Fingers In 
TCL:  Thumb Down

Supervised: Turning Hand Clockwise 
S4L: Pulling Two Fingers In  
TCL:  Pulling Two Fingers In

Supervised : marching 
FixMatch : marching 
TCL :  Zumba

Supervised: Sliding Two Fingers Up 
S4L: Sliding Two Fingers Up 
TCL:  Sliding Two Fingers Down

Supervised: balloon blowing 
FixMatch: spray painting  
TCL:  assembling computer

Supervised : applauding 
FixMatch : cheerleading  
TCL :  applauding

Supervised : bouncing on trampoline 
FixMatch : riding or walking with horse  
TCL :  climbing tree

Supervised: Doing other things 
S4L: Zooming Out With Two Fingers  
TCL:  Sliding Two Fingers Left

Figure 5: Qualitative examples comparing TCL with super-
vised baseline, S4L [60] and FixMatch [47]. Top Row: Top-1
predictions using ResNet-18 trained with 1% labeled data from
Jester, Bottom Row: Top-1 predictions using ResNet-18 trained
with 5% labeled data from Kinetics-400. TCL is able to correctly
recognize different hand gestures in Jester and diverse human ac-
tions in Kinetics-400 dataset. (Best viewed in color.)

beled data is from the target domain itself. This depicts the
robustness of TCL and its ability to harness diverse domain
data more efficiently in semi-supervised setting.
Qualitative Results. Figure 5 shows qualitative compari-
son between our approach TCL and other competing meth-
ods (S4L [60] and FixMatch [47]) including the simple su-
pervised baseline on Jester and Kinetics-400 respectively.
As can be seen, our temporal contrastive learning approach
is able to correctly recognize different hand gestures from
Jester dataset even with 1% of labeling, while the super-
vised baseline and the next best approach (S4L) fail to rec-
ognize such actions. Similarly, our approach by effectively
utilizing temporal information, predicts the correct label
in most cases including challenging actions like ‘climbing
tree’ and ‘zumba’ on Kinetics-400 dataset. More qualitative
examples are included in the supplementary material.
Role of Pseudo-Labeling. We test the reliability of pseudo-
labeling on Jester (using ResNet-18 and 1% labeling) with
50 epoch intervals and observe that the pseudo-labeling ac-
curacy gradually increases from 0% at the beginning to
65.95% at 100 epoch and then 93.23% at 350 epoch. This
shows that while our model may create some wrong groups
at the start, it gradually improves the groups as the train-
ing goes by, leading to a better representation by exploiting
both instance and group contrastive losses.



Approach Top-1 Accuracy
TCL w/o Group-Contrastive Loss 27.24±0.42
TCL w/ Pseudo-Label Consistency Loss 23.60±1.04
TCL (Ours) 29.81±0.77

Table 4: Ablation Studies on Mini-Something-V2. Numbers
show top-1 accuracy with ResNet-18 and 5% labeled Data.

4.3. Ablation Studies

We perform extensive ablation studies on Mini-
Something-V2 with 5% labeled data and ResNet-18 back-
bone to better understand the effect of different losses and
hyperparameters in our framework.

Effect of Group Contrastive Loss. We perform an exper-
iment by removing group contrastive loss from our frame-
work (ref. Section 3.2.3) and observe that top-1 accuracy
drops to 27.24% from 29.81% (Table 4), showing the im-
portance of it in capturing high-level semantics.

Ablation on Contrastive Loss. We investigate the effec-
tiveness of our contrastive loss by replacing it with pseudo-
label consistency loss used in FixMatch [47]. We observe
that training with our contrastive loss, surpasses the perfor-
mance of the training with the pseudo-label consistency loss
by a high margin (around 6.21% gain in the top-1 accuracy)
on Mini-Something-V2 (Table 4). We further compare our
approach in the absence of group-consistency (TCL w/o
Group-Contrastive Loss) with a variant of FixMatch [47]
that uses temporal augmentation and observe that our ap-
proach still outperforms it by a margin of 2.66% (24.58%
vs 27.24%) on Mini-Something-V2 (with ResNet-18 and
5% labeling). This shows that temporal augmentation alone
fails to obtain superior performance and this improvement
is in fact due to the efficacy of our contrastive loss formula-
tion over the pseudo-label loss used in FixMatch [47].

Effect of Different Frame Rate. We analyze the effect
of doubling frame-rates in both pathways and observe that
TCL (w/ 16 frame segments in base and 8 frame segments in
the auxiliary pathway) improves top-1 accuracy by 1.5% on
Mini-Something-V2 with ResNet-18 and 5% labeled data
(29.81% vs 31.31%). However, due to heavy increase in
compute and memory requirement with little relative gain
in performance, we limit our study to 8 and 4 frame setting.

Effect of Hyperparameters. We analyze the effect of the
ratio of unlabeled data to labeled data (µ) and observe that
by setting µ to {3, 5, 7}with a fixed γ = 1, produces similar
results on Mini-Something-V2 (Figure 6 (Left)). However,
as scaling µ often requires high computational resources,
we set it to 3 in all our experiments to balance the effi-
ciency and accuracy in semi-supervised action recognition.
We also find that weight of the instance-contrastive loss (γ)
greatly affects the performance in semi-supervised learning
as accuracy drops by more than 6% when setting γ to 3 in-
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Figure 6: Effect of Hyperparameters on Mini-Something-V2.
(Left) Varying the ratio of unlabeled data to the labeled data (µ),
(Right) Varying the instance-contrastive loss weight (γ).

stead of the optimal value of 9 on Mini-Something-V2 with
ResNet-18 backbone and 5% of labeling (Figure 6 (Right)).
Comparison With Self-Supervised Approaches. We
compare our method with three video self-supervised meth-
ods, namely Odd-One-Out Networks (O3N) [18], Video
Clip Order Prediction (COP) [57] and Memory-augmented
Dense Predictive Coding (MemDPC) [26] through pretrain-
ing using self-supervised method and then finetuning us-
ing available labels on Mini-Something-V2 (with ResNet18
and 5% labeled data). Our approach significantly outper-
forms all the compared methods by a margin of 6%-10%
(O3N: 19.56%, COP: 23.93%, MemDPC: 18.67%, TCL:
29.81%), showing its effectiveness over self-supervised
methods. Moreover, we also replace our temporal con-
trastive learning with O3N and observe that accuracy drops
to 24.58% from 29.81%, showing the efficacy of our con-
trastive learning formulation over the alternate video-based
self-supervised method on Mini-Something-V2.

5. Conclusion
We present a novel temporal contrastive learning frame-

work for semi-supervised action recognition by maximizing
the similarity between encoded representations of the same
unlabeled video at two different speeds as well as minimiz-
ing the similarity between different unlabeled videos run
at different speeds. We employ contrastive loss between
different video instances including groups of videos with
similar actions to explore high-level action semantics within
the neighborhood of different videos depicting different in-
stances of the same action. We demonstrate the effective-
ness of our approach on four standard benchmark datasets,
significantly outperforming several competing methods.
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