
Deep Analysis of CNN-based Spatio-temporal Representations for
Action Recognition

(Supplementary Material)

Chun-Fu (Richard) Chen1,†, Rameswar Panda1,†, Kandan Ramakrishnan1,
Rogerio Feris1, John Cohn1, Aude Oliva2, Quanfu Fan1,†

†: Equal Contribution
1MIT-IBM Watson AI Lab, 2Massachusetts Institute of Technology

Summary. As part of the supplementary material, we
first compare additional SOTA models trained with uniform
sampling and discuss runtime speed/memory of different
models in Section 1. We analyze the effects of pretrained
models in Section 2. Moreover, we expand Table 7 of the
main paper with the FLOPs and parameters for different
temporal aggregations in Table 3. We then describe the
datasets and benchmarks in Section 3 and Section 4, respec-
tively. Section 5 describes the model implementation used
in the Mini-Datasets benchmark. Figure 2 shows the results
of all the models on Mini datasets.

1. More Results on SOTA Models

We argue in the main paper that the effect of input sam-
pling (i.e., uniform or dense sampling) should be considered
for fair comparison of action recognition models. Follow-
ing this practice, we add TSM [7] and TAM [2] to Figure 8
of the main paper, which is shown here as Figure 1. Like
I3D, TAM and TSM work well with both uniform and dense
sampling. When uniform sampling is considered for TAM
and TSM, they are slightly worse than SlowFast in accuracy
but at the same efficiency in FLOPs.

Moreover, we also benchmark the runtime speed and
memory consumption for a more comprehensive compar-
ison among different models. Table 1 shows throughput,
FLOPs and max batch size that can be fitted on a GPU. The
numbers are conducted based on a NVIDIA V100 32G GPU
with CUDA 10.1, cudnn 7.6.5, and PyTorch 1.5; and the
throughput is measured under maximum batch size. Slow-
fast achieved better speed and memory usage; on the other
hand, even though TAM-R50 has only half FLOPs of I3D-
R50, their throughputs are similar. This is because the 3D-
depthwise convolution used in TAM is not yet optimized1.

1https://github.com/pytorch/pytorch/pull/40801

Models Accuracy FLOPs Throughput Maximum
(%) (G) (clips/sec) batch size

TSN-ResNet50-tp 74.9 73.9 53.5 40
TAM-ResNet50 76.2 171.5 14.2 48
I3D-ResNet50 76.6 335.3 16.1 44

SlowFast-ResNet50-8×8 76.4 65.7 48.9 96

Table 1: Speed and memory complexity of models.

Model Pretrain
ImageNet None

I3D-ResNet50 76.61 76.54
TAM-ResNet50 76.18 75.61

Table 2: Top-1 Accuracy (%) of I3D and TAM models trained
with and without ImageNet weights on Kinetics.

2. Effects of Pretrained Models

It is shown in [5] that when there is enough training data
and the training is sufficiently long, then pretraining from
ImageNet is not necessary for producing competitive per-
formance in a downstream task like object detection. Here
we conduct a similar experiment to train I3D-ResNet50
and TAM-ResNet50 from scratch for 196 epoches. As
can be seen from Table 2, I3D-ResNet50 does not bene-
fit much from a pretrained ImageNet model. For TAM-
ResNet50, when trained from scratch, it degrades its accu-
racy by ∼ 0.5, which is not significant. Thus our results
seem to echo a similar observation that pretraining is not
crucial for large-scale video action recognition as long as
the training is allowed to be sufficiently long.

3. Datasets

Table 4 illustrates the characteristics of the datasets used
in the paper. The SSV2 dataset contains a total of 192K
videos of 174 human-object interactions, captured in a sim-



1 2 3 5 7 9 10
Number of Clips

72

73

74

75

76

77

To
p-

1 
Ac

cu
ra

cy
 (%

)

TSM_D
TAM_D
SlowFast_D

TSM_U
TAM_U
I3D_U

0 1 2 3 4
FLOPs (1012)

72

73

74

75

76

77

To
p-

1 
Ac

cu
ra

cy
 (%

)

TSM_D
TAM_D
SlowFast_D

TSM_U
TAM_U
I3D_U

Figure 1: Model performance tested using 3 256×256 spatial crops and different number of clips. ’U’: uniform sampling; ’D’: dense
sampling. Best viewed in color.

Dataset Frames InceptionV1 ResNet50

None I3D Conv. TAM None I3D Conv. TAM TSM NLN

Mini-SSV2
f=8 33.1 56.4 58.2 59.7 33.9 62.6 61.6 65.4 64.1 53.0
f=16 34.7 61.8 63.7 63.9 35.3 66.2 65.7 68.6 67.4 55.0

Mini-Kinetics
f=8 70.4 68.1 68.3 68.8 72.1 73.3 71.5 74.1 74.1 73.7
f=16 70.5 70.9 70.7 70.0 72.5 75.5 73.4 76.4 75.6 74.5

FLOPs (G) f=8 12.0 33.6 32.2 12.0 32.7 64.2 107.0 32.8 32.7 196
Parameters (M) f=8 5.7 12.4 17.2 5.7 23.7 46.3 71.5 23.7 23.7 31.0

Table 3: Performance of different temporal aggregation strategies w/o temporal pooling. FLOPs of 16-frame are the double
of 8-frame models, and number of parameters are the same.

ple setup without much background information. It has
been shown that temporal reasoning is essential for recogni-
tion on this dataset [12]. Kinetics has been the most popular
benchmark for deep-learning-based action approaches. It
consists of 240K training videos and 20K validation videos
of 400 action categories, with each video lasting 6-10 sec-
onds. Interestingly, approaches without temporal modeling
such as TSN [10] achieves strong results on this dataset, im-
plying that modeling temporal information is not that im-
portant on this dataset. MiT is a recent collection of one
million labeled videos, involving actions from people, ani-
mals, objects or natural phenomena. It has 339 classes and
each clip is trimmed to 3 seconds long. These datasets cover
a wide range of different types of videos, hence are suitable
for studying various spatio-temporal representations.

We extract video frames via the FFMPEG packages and
then resize the shorter side of an image to 256 while keeping
the aspect ratio of the image.

4. Training and Evaluation

4.1. Mini-Datasets

Training. Table 5 illustrates the training protocol we use
for all the models in our experiments. We train most of our

models using a single compute node with 6 V100 GPUs and
a total of 96G GPU memory with a batch size of 72 or the
maximum allowed for a single node (a multiple of 6). For
some of the large models (for example, I3D-ResNet50) us-
ing 32 or 64 frames, we limit the number of nodes to no
more than 3, i.e. 18 GPUs, and apply synchronized batch
normalization in training at a batch size of 36. We observe
that such a setup generally leads to comparable model accu-
racy to the approaches studied in this work. Following the
practice in TSN [10], we apply multi-scale augmentation
and randomly crop the same 224×224 region of whole in-
put images for training. In the meanwhile, temporal jittering
is used to sample different frames from a video. Afterward,
the input is normalized by the mean and standard deviation
used in the original ImageNet-pretrained model.

Evaluation. In the clip-level accuracy setting, we sample f
frames either with uniform sampling or dense sampling and
then crop a 224×224 region centered at each image after
resizing the shorter side of the image to 224. For uniform-
ing sampling, we choose the middle frame of each segment
to form a clip while for dense sample the first clip is used.
In the video-level accuracy setting, m clips need to be pre-
pared. For dense sampling, we uniformly select m points
and then take f consecutive frames starting at each point.



Dataset # of Images # of DurationTrain Val Classes

SSV2 [4] 168k 24k 174 3-5s@12fps
Mini-SSV2 81k 12k 87

Kinetics [6] 240k 19k 400 6-10s@30fps
Mini-Kinetics 121k 10k 200

MiT [8] 802k 34k 339 3s@30fps
Mini-MiT 100k 10k 200

Mini-Something-Something and Mini-Kinetics400 are.
created by randomly sampling half of classes.

Table 4: Overview of datasets.

8-frame 16-frame 32-frame 64-frame

Weight Init. ImageNet 8-frame 16-frame 32-frame
Epochs1 75 (100) 35 (45) 35 (45) 35 (45)

Learning rate 0.01
LR scheduler2 cosine multisteps multisteps multisteps
Weight decay 0.0005

Optimizer Synchronized SGD with moment 0.9
1: Mini-Kinetics uses the epoch numbers mentioned in the bracket.
2: when the epoch number is 35, the learning rate drops 10× at the 10-th, 20-th, 30-th epoch;
while drops 10× at the 15-th, 30-th, 40-th epoch when 45 epochs is used.

Table 5: Training protocol for Mini-datasets.

In the case of uniform sampling, we apply an offset i from
the middle frame, where −m/2 <= i < m/2, to shift the
sampling location at each segment. We use m = 10 to com-
pute video-level accuracy in our analysis.

4.2. Full Datasets

To enable SOTA results on Kinetics, we follow the prac-
tices in the SlowFast paper [3] to train the models. During
training, we take 64 consecutive frames from a video and
sample every other frame as the input, i.e., 32 frames are
fed to the model. The shorter side of a video is randomly
resized to the range of [256, 320] while keeping aspect ra-
tio, and then we randomly crop a 224×224 spatial region as
the training input. We trained all models for 196 epochs, us-
ing a total batch size of 1024 with 128 GPUs, i.e. 8 samples
per GPU. Batch normalization is computed on those 8 sam-
ples. We warm up the learning rate from 0.01 to 1.6 with 34
epochs linearly and then apply half-period cosine anneal-
ing schedule for the remaining epochs. We use synchro-
nized SGD with momentum 0.9 and weight decay 0.0001.
During the evaluation, we uniformly sample 10 clips from a
video, and then take 3 256×256 crops from each clip whose
shorter side of each clip is resized 256. The accuracy of a
video is conducted by averaging over 30 predictions. On the
other hand, for SSV2 dataset, we only sample 2 clips since
the video length of SSV2 is shorter.

4.3. Transfer Learning

In transfer learning study, we used the models described
in Section 6.2, i.e., 32-frame models trained with Kinetics,
as the pretrained weights. Then, we finetuned 45 epochs
with cosine annealing learning rate schedule starting with
0.01, and trained the models with a batch size of 48 with
synchronized batch normalization on a 6 GPUs machine.

5. Model Implementation

Implementation. We follow the original published papers
as much as we can to implement the approaches in our anal-
ysis. However, due to the differences in the backbones,
some modifications are necessary to ensure a fair compari-
son under a common experimental framework. Here we de-
scribe how we build the networks including three backbones
(InceptionV1, ResNet18 and ResNet50), four video archi-
tectures (I3D, S3D, TAM and TSN), and where to perform
temporal pooling. For three backbones, we used those 2D
models available on the torchvision repository (googlenet,
resnet18, resnet50), and then used the weights in the model
zoo for initializing the models either through inflation (I3D
and S3D) or directly loading (TAM and TSN). Note that,
for inflation, we simply copy the weights along the time
dimension. Moreover, we always perform the same num-
ber of temporal pooling at the similar locations across all
the backbones while training models with temporal pool-
ing. For each backbone, there are five positions to perform
spatial pooling, we add maximum temporal pooling along
with the last three spatial poolings (kernel size is set to 3).

I3D. We follow I3D paper to re-implement the network [1].
We convert all 2D convolutional layer into 3D convolutions
and set kernel size in temporal domain to 3 while using
same spatial kernel size. For I3D-ResNet-50, we convert
3×3 convolution in bottleneck block into 3×3×3.

S3D. We follow the idea of the original S3D and R(2+1)D
paper to factorize 3D convolution in the re-implemented
models [11, 9]; thus, each 3D convolution in I3D becomes
one 2D spatial convolution and one 1D temporal convolu-
tion. Nonetheless, the first convolution of the network is
not factorized as the original papers. For InceptionV1 back-
bone, the difference from the original paper is the location
of temporal pooling of backbone [11]. More specifically,
in our implementation, we remove the temporal stride in
the first convolutional layer and then add an temporal pool-
ing layer to keep the same temporal downsampling ratio
over the model. On the other hand, for ResNet backbone,
we do not follow the R(2+1)D paper to expand the chan-
nels to have similar parameters to the corresponding I3D
models, we simply set the output channels to the original
output channel size [9] which helps us to directly load the
ImageNet-pretrained weights into the model.



Figure 2: Top-1 accuracy of all the models with and without temporal pooling on three mini-datasets. The video architectures
are separated by color while the backbones are separated by symbols. Best viewed in color.

TAM. We follow the original paper to build TAM-
ResNet [2], the TAM module is inserted at the non-identity
path of every residual block. For TAM-InceptionV1, we
add TAM modules after the every inception module.
TSN. It does not have any temporal modeling, so it directly
uses 2D models.

References
[1] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,
pages 6299–6308, 2017. 3

[2] Quanfu Fan, Chun-Fu (Ricarhd) Chen, Hilde Kuehne, Marco
Pistoia, and David Cox. More Is Less: Learning Efficient
Video Representations by Temporal Aggregation Modules.
In NeurIPS, 2019. 1, 4

[3] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition.
arXiv:1812.03982, 2018. 3

[4] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The” something something” video
database for learning and evaluating visual common sense.
In ICCV, 2017. 3

[5] Kaiming He, Ross Girshick, and Piotr Dollar. Rethinking
imagenet pre-training. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), October
2019. 1

[6] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics
human action video dataset. arXiv:1705.06950, 2017. 3

[7] Ji Lin, Chuang Gan, and Song Han. Temporal Shift Module
for Efficient Video Understanding. In ICCV, 2019. 1

[8] Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ra-
makrishnan, Sarah Adel Bargal, Yan Yan, Lisa Brown,

Quanfu Fan, Dan Gutfreund, Carl Vondrick, et al. Moments
in time dataset: one million videos for event understanding.
IEEE TPAMI, 2019. 3

[9] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A Closer Look at Spatiotem-
poral Convolutions for Action Recognition. In CVPR, June
2018. 3

[10] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks: Towards good practices for deep action recogni-
tion. In ECCV. Springer, 2016. 2

[11] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking Spatiotemporal Feature Learn-
ing: Speed-Accuracy Trade-offs in Video Classification. In
ECCV, Sept. 2018. 3

[12] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
ralba. Temporal relational reasoning in videos. In ECCV,
pages 803–818, 2018. 2


