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Abstract

For many applications with limited computation, com-

munication, storage and energy resources, there is an im-

perative need of computer vision methods that could select

an informative subset of the input video for efficient pro-

cessing at or near real time. In the literature, there are

two relevant groups of approaches: generating a “trailer”

for a video or fast-forwarding while watching/processing

the video. The first group is supported by video summa-

rization techniques, which require processing of the entire

video to select an important subset for showing to users.

In the second group, current fast-forwarding methods de-

pend on either manual control or automatic adaptation of

playback speed, which often do not present an accurate rep-

resentation and may still require processing of every frame.

In this paper, we introduce FastForwardNet (FFNet), a re-

inforcement learning agent that gets inspiration from video

summarization and does fast-forwarding differently. It is an

online framework that automatically fast-forwards a video

and presents a representative subset of frames to users on

the fly. It does not require processing the entire video, but

just the portion that is selected by the fast-forward agent,

which makes the process very computationally efficient. The

online nature of our proposed method also enables the

users to begin fast-forwarding at any point of the video.

Experiments on two real-world datasets demonstrate that

our method can provide better representation of the input

video (about 6%-20% improvement on coverage of impor-

tant frames) with much less processing requirement (more

than 80% reduction in the number of frames processed).

1. Introduction

Leveraging video input has become increasingly impor-

tant in many intelligent Internet-of-Things (IoT) applica-

tions, such as environment monitoring, search and rescue,

smart surveillance, and wearable devices. In these systems,

large amount of video needs to be collected and processed

by users (human operators or autonomous agents), either lo-
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Figure 1. Overview of Our Proposed Method. Given a video

stream, our FFNet decides which frame to process next and

presents it to users while skipping the irrelevant frames in an on-

line manner. Top-row shows the representative frames in the nor-

mal playing portion and bottom-row shows the irrelevant frames

in the fast-forwarding portion. Best viewed in color.

cally or remotely through network transmission (or a com-

bination of both). For better system performance, the pro-

cessing often needs to be done at or near real time. On the

other hand, the local nodes/devices typically have limited

computation and storage capability and often run on bat-

teries, while the communication network is constrained by

bandwidth, speed and reliability [1, 19, 40]. Such discrep-

ancy presents an urgent need for new vision methods that

can automatically select an informative subset of the input

video for processing, to reduce computation, communica-

tion and storage requirements and to conserve energy.

In the relevant literature, with ever expanding volume

of video data, there is significant interest in video sum-

marization techniques, which compute a short and infor-

mative subset of the original video for human consump-

tion or further processing [4, 9, 26, 49, 50, 51]. How-

ever, these techniques require the processing of entire video

and often take a long time to generate the subset. There

are also video fast-forwarding techniques where the play-

back speed of the video is adjusted to meet the needs of

users [3, 10, 13, 31, 32, 34, 38], but they often do not present

an accurate representation and may still require processing

of the entire video. Both types of approaches are not suit-

able for the resource-limited and time-critical systems we

discussed above. To address this problem, we started by

asking the following question: Is it possible to develop a
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method for fast-forwarding through a video that is compu-

tationally efficient, causal, online and results in informative

segments which can be validated through statistical evalua-

tion and user experience?

In this paper, we introduce FastForwardNet (FFNet),

a reinforcement learning agent that gets inspiration from

video summarization and does fast-forwarding differently

from the state-of-the-art methods. It has an online frame-

work that automatically fast-forwards a video and presents

a selected subset of frames to users on the fly (see Fig. 1

for an example). The fast-forward agent does not require

the processing of entire video. This makes the process very

computationally efficient, and communicationally efficient

if the video (subset) needs to be transmitted over the net-

work for remote processing. The online nature of our pro-

posed FFNet enables the users to begin fast-forwarding at

any point when watching/processing videos. The causal na-

ture of our FFNet ensures that it can work even as the video

subset is being generated.

To summarize, the key advantage of our approach is that

it automatically selects the most important frames without

processing or even obtaining the entire video. Such capa-

bility can significantly reduce resource requirements and

lower energy consumption, and is particularly important for

resource-constrained and time-critical systems. The main

technical contributions of this paper are as follows.

(1) We formulate video fast-forwarding as a Markov deci-

sion process (MDP), and propose FFNet for fast-forwarding

a potentially very long video while presenting its important

and interesting content on the fly.

(2) We propose an online framework to deal with incremen-

tal observations without requiring to store and process the

entire video. At any point of the video, our approach can

jump to potentially important future frames based on anal-

ysis of past frames that had been selected.

(3) We demonstrate the effectiveness of our proposed FFNet

on two standard challenging video summarization datasets,

Tour20 [27] and TVSum [41], achieving real-time speed on

all tested videos.

2. Related Work

Our work relates to three major research directions:

video fast-forward, video summarization and reinforcement

learning. Here, we focus on some representative methods

that are closely related to our work.

Video Fast-Forward. Video fast-forward methods are

typically used when users are losing patience to watch the

entire video. Most commercial video players offer man-

ual control on the playback speed, e.g., Apple QuickTime

Player offers 2, 5 and 10 multi-speed fast-forward.

Current automatic fast-forward approaches mostly focus

on adapting the playback speed based on either the similar-

ity of each candidate clip to the query clip [31] or the mo-

tion activity patterns present in a video [3, 29, 30]. Some

recent works use mutual information between frames to de-

scribe the fast-forward policy [11, 12], or use shortest path

distance over the graph that is constructed with semantic

information extracted from frames [34, 38]. This family

of methods is most relevant to our goal. A similar fam-

ily of work (hyperlapse) [32, 10, 13] aiming at speed-up

and smoothing has also been developed for creating fast-

forwarded videos. In contrast to these prior works, we de-

velop a deep reinforcement learning strategy for the fast-

forward policy. Our proposed framework (FFNet) is an on-

line and causal system that does not need the entire video to

get the fast-forward policy, making it very efficient in terms

of computation, communication and storage needs.

Video Summarization. The goal of video summariza-

tion is to produce a compact summary that contains the

most important parts of a video. Much progress has been

made to summarize a video using either supervised learn-

ing based on video-summary pairs [6, 9, 49, 50, 33, 26]

or unsupervised approaches based on low-level visual in-

dices [5, 8, 20, 7] (see reviews [24, 43]). Leveraging

crawled web images or videos is another recent trend for

video summarization [14, 15, 41, 28]. Closely related to

video summarization, the authors in [37] develop a frame-

work for creating storylines from photo albums.

Most relevant to our approach is the work of online video

summarization, which compiles the most salient and infor-

mative portion of a video by automatically scanning through

the video stream, in an online fashion, to remove repeti-

tive and uninteresting content. Various strategies have been

studied, including Gaussian mixture model [25], online dic-

tionary learning [51], and submodular optimization [4]. Our

approach significantly differs from these methods in that

it only processes a subset of frames instead of the entire

video. To the best of our knowledge, this is the first work to

address video fast-forwarding in generating an informative

summary from a video.

Reinforcement Learning. Apart from the recent suc-

cess in playing Go games and Atari [23, 39], deep reinforce-

ment learning(DRL) has also achieved promising perfor-

mance in several vision tasks, such as object detection [21],

visual tracking [48], pose estimation [17] and image cap-

tioning [35]. [47] employs a computationally intensive re-

inforcement learning strategy for action detection in short

video clips. In contrast to [47], our framework is an on-

line and causal system that enables users to begin fast-

forwarding at any point while watching videos (online) and

can work even as summary is being generated (causal).

Markov Decision Process (MDP) has been widely used for

several vision tasks. For example, in [42], the authors for-

mulate a policy learning as MDP for activity recognition.

Q-learning (a reinforcement learning method) is one way to
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solve MDP problems [45]. In the proposed FFNet, we use

a multi-layer neural network to represent the Q-value func-

tion, similar to [36, 46]. We are not aware of any prior work

in reinforcement learning that deals with fast-forwarding

while summarizing long duration videos.

3. Methodology

In this section, we provide the details of FFNet. We start

with an overview of our approach in Sec. 3.1, present de-

tailed formulations in Sec. 3.2 and Sec. 3.3, and then ex-

plain the training algorithm in 3.4.

3.1. Solution Overview

Our goal is to fast-forward a long video sequence by

skipping unimportant frames in an online and real-time

fashion (see Fig. 1). Given the current frame being pro-

cessed, the goal of FFNet is to decide the number of frames

to skip next. Those frames within the skipping interval

will not be processed. Then, the video frames we present

to users include the frames processed by FFNet and their

neighboring windows (which are not processed).

We formulate the above fast-forwarding problem using

a Markov decision process (MDP) and develop our FFNet

as a reinforcement learning agent, i.e., a Q-learning agent

that learns a policy to skip unimportant frames and present

the important ones to users. During test time, given a raw

video, fast-forwarding is a sequential process. At each

step k = 1, ...,K of an episode, we process the current

frame, decide how many future frames to skip, and jump to

the frame after the skipped ones for next processing. We

present the processed frames and their neighboring ones

(with processed frames as window centroids) to users as im-

portant subsets of the video.

3.2. MDP Formulation for FFNet

We consider fast-forwarding as a control problem that

can be formulated as an MDP with the following elements.

State: A state sk describes the current environment at the k-

th step of the episode. Given a video sequence, we consider

a single frame as a state, defined in terms of the extracted

feature vector of the current frame.

Action: An action ak is performed at step k by the system

and leads to an update of the state. We define a discrete set

of possible actions A =
{

a1, a2, ..., aM
 

, which represents

the possible numbers of frames to skip.

Reward: An immediate reward rk = r(sk, ak, sk+1) is

received by the system when it transits from one state sk to

another state sk+1 after taking action ak (Sec. 3.3).

The accumulated reward is then defined as

R =
X

k

γk−1rk =
X

k

γk−1r(sk, ak, sk+1) (1)

where γ ∈ [0, 1] denotes the discount factor for the rewards

in the future.

Policy: The policy ⇡ determines the action to be chosen in

every state visited by the system, i.e., it selects the action

that maximizes the expected accumulated reward for cur-

rent and future actions as

⇡(sk) = argmax
a

E[R|sk, a, ⇡] (2)

In this case, the policy in FFNet decides how many

frames to skip when the system is at certain frame (state).

3.3. Design of the Immediate Reward

In this part, we introduce the definition of the immediate

reward rk for ak in state sk. For a raw video available in

the training set, we assume each frame i has a binary label

l(i). l(i) = 1 indicates that frame i is an important frame,

and l(i) = 0 means it is an unimportant one.

Given a video and its labels, we define the immediate

reward as follows:

rk = −SPk +HRk (3)

The immediate reward consists of two parts that model

the “skip” penalty (SP) and the “hit” reward (HR), as ex-

plained below.

First, SPk in Eqn.(3) defines the penalty for skipping the

interval tk in step k:

SPk =

P

i2tk
1(l(i) = 1)

T
− β

P

i2tk
1(l(i) = 0)

T
(4)

where 1(·) is an indicator function that equals to 1 if the

condition holds. T is the largest number of frames we may

skip, taken as a normalized term. β ∈ [0, 1] is a trade-off

factor between the penalty for skipping important frames

and the reward for skipping unimportant frames.

Then, the second term HRk in Eqn.(3) defines the re-

ward for jumping to an important frame or a position near

an important frame. To model this reward, we first transfer

the one-frame label to a Gaussian distribution in a time win-

dow. More specifically, a frame i will have a reward effect

on the positions in its nearby window that is defined as

fi(t) =
1√
2⇡σ2

exp(− (t− i)2

2σ2
), t ∈ [i− w, i+ w] (5)

where w controls the window size of the Gaussian distribu-

tion. In the experiment section, we set σ = 1, w = 4. The

reason for this transfer is that the reward should be given if

the agent jumps to a position that is close to the important

frame. To some extent, it jumps to a potentially important

area. Assume in time step k, the agent jumps to the zth
frame in the original video. Based on the above definition,

the HRk is computed as

HRk =

z+w
X

i=z−w

1(l(i) = 1) · fi(z) (6)
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Figure 2. Model of our FFNet. We learn a strategy for fast-forwarding videos. At each time step k we use the Q network to select the

action ak, i.e., the number of frames to skip next. The state sk+1 is updated with the frame it jumps to. Then, the reward rk for action ak

in state sk is computed with the interval annotation gk. A transition in a quadruple form (sk ak sk+1 rk) is used to update the Q network.

3.4. Learning the Fast-Forwarding Policy

During the operation of FFNet, we want to maximize the

accumulated reward R in Eqn.(1). Our goal is to find an

optimal policy ⇡⇤ that maps the state to the corresponding

action to fulfill the requirement. With Q-learning, we eval-

uate the value of action E[R|s, a, ⇡] as Q(s, a). In classical

Q-learning method, the Q-value is updated by

Qk+1(sk, ak) =(1− ↵)Qk(sk, ak)

+ ↵(rk + γmax
ak+1

Qk(sk+1, ak+1))
(7)

where ↵ ∈ (0, 1] represents the learning rate during the

training process.

In this problem, we have finite actions but infinite states.

No direct assignment of Q-values can be made, thus we

use the neural network to approximate the Q-value. The

Q-function in this work is modeled by a similar multilayer

perception (MLP) structure as in [46]. The input is the cur-

rent state vector, and the output is a vector of the estimated

Q-value for each action given the state. The optimal value

of the accumulated reward in time step k is achieved by tak-

ing action ak and represented as Q⇤(sk, ak), which can be

calculated by Bellman equation in a recursive fashion:

Q⇤(sk, ak) = rk + γmax
ak+1

Q⇤(sk+1, ak+1) (8)

where γ is the same discount factor in the definition of the

accumulated reward in Eqn. (1). Note that when using gra-

dient descent, Eqn.(8) is consistent with the Q-learning up-

date equation Eqn. (7).

With the above update equation, we use the mean

squared error between the target Q-value and the output

of MLP as the loss function. During the training process,

we apply ✏-greedy strategy to better explore the state space,

which picks a random action with probability ✏ and the ac-

tion that has Q⇤(s, a) with probability 1-✏.

The model of our FFNet is shown in Fig. 2. Given a

video, the fast-forward agent starts from the first frame. The

FFNet Q is initialized with random parameters. For the cur-

rent frame in time step k, we first extract the feature vector

to get the state sk. Based on the current Q network and the

state sk, one action ak is chosen using the ✏-greedy strategy

and the agent jumps to a new frame based on the action.

Then the current state transits to sk+1, i.e., the feature ex-

tracted from the new current frame. With the interval labels

gk of the video, we compute the immediate reward rk for

performing this action. The transition (sk, ak, sk+1, rk)

then is sent to update the Q network. More details about

our training algorithm are presented in Algorithm 1.

4. Experiments

In this section, we present extensive experiments and

comparisons to demonstrate the effectiveness and efficiency

of our proposed framework for fast-forwarding videos.

4.1. Experimental Setup

Datasets. We conduct experiments on two publicly

available summarization datasets, namely Tour20 [27] and

TVSum [41]. Both datasets are very diverse. Tour20 con-

sists of 140 videos of about 20 tourist attractions selected

from the Tripadvisor travelers choice landmarks 2015 list.

TVSUM contains 50 videos downloaded from YouTube in

10 categories, as defined in the TRECVid Multimedia Event

Detection task. To the best of our knowledge, Tour20 is the

largest publicly available summarization dataset with 140
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Algorithm 1 Training Algorithm for FFNet

1: Input: a set of videos {V } and annotations {G}
2: Output: Q-value neural network Q

3: Init MLP( ) → Q

4: Initialize: memory M = [empty], explore rate ✏ = 1

5: for i = 1 to N do

6: Training Video Selection (V , G) → vi, gi
7: framecurr = 0
8: Process(framecurr) → scurr
9: while framecurr <Size(vi) do

10: acurr =

(

ak ∈ A, k = random(n), prob. = ✏

argmaxQ(scurr, a
0), o.w.

11: framenext = Action(acurr, framecurr)

12: Process(framenext) → snext
13: r = Reward(scurr, acurr, snext, gi)

14: input = scurr

15: target =

(

r + γmaxa0 Q(snext, a
0), a = acurr

Q(scurr, a), o.w.

16: (input, target) → M

17: snext → scurr
18: if M > batchsize then

19: Training(M ,Q) → Q

20: ✏ = max(✏− M ✏, ✏min)
21: Empty(M )

22: end if

23: end while

24: end for

videos totaling about 7 hours. Both datasets provide mul-

tiple user-annotated summaries for each video. For Tour20

dataset, we combine all three user summaries as human-

created summary (labels for training). For TVSum dataset,

we first average the frame-level importance scores to com-

pute shot-level scores, and then select top 20% shots for

each video as human-created summary.

Implementation Details. Our FFNet is implemented

using TensorFlow library on a Tesla K80 GPU. We use a

4-layer neural network to approximate the Q function. The

discount factor γ for the rewards in the future is set as 0.8.

The exploration rate for Q-learning decays from 1 and stops

at 0.1, with a rate of 0.00001. The memory size is set as 128

transitions. We train the Q network up to 1000 epochs for

Tour20 and 800 epochs for TVSum.

Performance Measures. Similar to [9], we report a cov-

erage metric at video segment level, which measures how

well the results of fast-forward methods cover the important

frames in the ground truth obtained from human labeling.

More specifically, a segment selected by a method is con-

sidered as true positive if the number of important frames it

covers (based on the ground truth labels) exceeds a certain

threshold called the hit number. We evaluate on different hit

numbers ranging from 1 to 20 throughout our experiments.

It is important to note that for the intelligent applica-

tions we target (e.g., smart surveillance, search and rescue),

when measuring system performance, covering the impor-

tant frames is more critical than skipping the unimportant

ones, since such coverage determines the system’s capabil-

ity to identify important events and possibly react to them.

Compared Methods. We compare our approach with

several methods that fall into two categories: (1) of-

fline processing methods including Microsoft Hyperlapse

(MH) [13], Spectrual Clustering (SC) [44] and Sparse Mod-

eling Representative Selection (SMRS) [5]; and (2) online

methods including LiveLight (LL) [51] and Online Kmeans

(OK) [2]. Please see supplementary for more details.

Experimental Settings. We use Alexnet [16] fc7 fea-

tures (4096-dimensional) to represent each video frame and

tune the parameters in each method to have the best per-

formance. For each method (including ours), we generate a

subset of video frames that has the same length as in ground

truth to make a fair comparison. We use the desktop version

of Microsoft Hyperlapse (MH) to generate the subset videos

in a 4x speed-up rate. For online k-means (OK) and spec-

tral clustering (SC), we set the number of clusters to 20, as

in [28]. In LiveLight (LL), the dictionary is initialized as

the first 10% of segments in a video. For FFNet, we use

an action space of 25, i.e., skipping from 1 to 25 frames

and the trade-off factor β is set to 0.8 throughout the exper-

iments. For each dataset, we randomly select 80% of videos

for training and use the remaining 20% for testing. We run 5

rounds of experiments and report the average performance.

4.2. Coverage Evaluation

Fig. 3 and Fig. 4 show the mean segment-level cover-

age achieved by different methods on Tour20 and TVSum

dataset, respectively. Each point in these figures repre-

sents the segment-level coverage achieved by an algorithm

given certain hit number. For example, in Fig. 3, our pro-

posed FFNet achieves a segment-level coverage of about

90% for a hit number of 10. This means that for about 90%
of the segments selected in ground truth (i.e., the impor-

tant segments), at least 10 frames in each of them are se-

lected/covered by FFNet. When the hit number is smaller

or equal to 7, the coverage of FFNet is 100%, i.e., every

important segment has at least 7 frames selected by FFNet.

When comparing FFNet with other methods in Fig. 3,

we have the following observations:

• For smaller hit numbers (say, under 10), our approach

achieves excellent coverage (90% or above) and signif-

icantly outperforms all other methods (about 10%-20%
better). This shows that the subset selected by FFNet is

able to provide more complete coverage of the impor-

tant information throughout the video stream.
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Figure 3. Segment-level coverage on Tour20 dataset with dif-

ferent hit number thresholds. Our FFNet (red line on top) out-

performs all other methods by a significant margin.

• As expected, the coverage of any method goes down with

the increase of hit number requirement. Nevertheless, for

larger hit numbers (say, 10-20), our approach FFNet still

outperforms all other methods. This shows its consis-

tency in providing better coverage performance.

Similar result can be seen in Fig. 4 for the TVSum

dataset. Notice that for all methods (including ours), perfor-

mance on Tour20 is not as good as on TVSum. We believe

the difference is due to the fact that Tour20 dataset contains

some videos capturing static objects and taken from a fixed

camera. In this case, the state at each time step in our MDP

is the same, which may confuse the Q-learning agent.

Comparison with State-of-the-Art Summarization

Methods: We additionally compare our FFNet with the

state-of-the-art video summarization methods[9, 28, 50]

and one supervised learning baseline (Sup) (implemented

as regression) without reinforcement learning. Limited to

space, we only present coverage at hit number of 10 in Ta-

ble 1. Note that we are only able to compare with [50]

on the TVSum dataset as the pre-trained model is publicly

available by the authors. Our approach outperforms all the

baselines by a significant margin, showing that the sum-

mary selected by FFNet is able to provide more complete

coverage of the important information throughout the video

stream. Performance improvement over the Sup baseline

shows the advantage of longer time horizon of the reinforce-

ment learning policy in fast-forwarding videos.

Qualitaive Results. Fig. 5 demonstrates a qualitative ex-

ample from Tour20 dataset (see supplementary file for more

of such examples). It clearly demonstrates that our FFNet is

able to fast-forward through the unimportant parts and find

the most important/relevant parts from a video, and is close

to the ground truth (human-created summaries). At the top

of Fig. 5 are the representative video segments selected by
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Figure 4. Segment-level coverage on TVSum dataset under dif-

ferent hit number thresholds. Our FFNet (red line on top) out-

performs all other methods by a significant margin.

Dataset [9] [28] [50] Sup FFNet

Tour20 0.754 0.826 - 0.685 0.893

TVSum 0.738 0.877 0.553 0.526 0.941

Table 1. Coverage achieved by different methods at hit number

10. “Sup” represents the supervised learning baseline with super-

vision being the # of frames to jump to the next informative frame

as per groundtruth. Our approach performs the best.

our approach. The second row is the ground truth (GT). The

remaining rows represent the segments selected by the other

methods for the same video. At the beginning, our policy

takes larger steps to skip frames that show only clouds with-

out any interesting events. Once the roadside scenes (e.g.,

shopping area, walking tourists) start, the model begins to

take small steps and presents most of the original segments.

To summarize, we observe the following.

• For most of the important parts, our FFNet chooses not

to skip and presents most of the original segments.

• For unimportant parts, FFNet takes larger jumping steps

and smoothly skips frames.

There are also some limitations of our model. Fig. 6

shows a failure case of FFNet. This video records a wa-

ter fountain scene near Burj Khalifa, captured by a nearly

static camera. From beginning to end, the frames are al-

most the same, except for the change of the water fountain

shape and some moving pedestrians. Our FFNet is able to

stress on several segments, but they do not match well with

the ground truth. We believe this is due to the fact that the Q

agent gets similar state after each transition, which make it

confused about the pattern of fast-forwarding policy for this

particular video. We expect our approach could be made

more robust to handle such videos by explicitly using se-

mantic analysis [22] and could also benefit from domain
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Figure 5. Exemplar summaries generated while fastforwarding a video of Machu Picchu from the Tour20 dataset. The frames on

top represent segments in our FFNet fast-forwarding result. The rows below illustrate the selected portions using different methods. The

X-axis is the frame index over time. Notice that the segments selected by FFNet contains most of the important content labeled in the

ground truth, including the roadside scene at the starting point, shopping area, walking tourists, different angles of the natural environment

near the attraction, and the main citadel with zoom-in and zoom-out views. Figure is best viewed in color.

Figure 6. A failure case of FFNet. Six frames represent the six

important segments in ground truth. The ground truth selection is

illustrated in the top row in red, and the selection from FFNet is

illustrated below in green (figure is best viewed in color).

adaptation techniques [18] for more challenging datasets.

Effect of Window Size: We test our approach on TV-

Sum dataset with 3 cases of window size w in HRk, set to

2, 3, and 4. Fig. 7 shows that window size has little effect

on the performance, indicating that our method is robust to

the change in window size.

4.3. User Study

In addition to the above quantitative analysis, we per-

formed a subjective evaluation study involving four human

Figure 7. Effect of window size in reward. As can be seen, it has

little effect on the performance. Best viewed in color.

subjects to assess the quality of the selected video frames

from different methods.

We choose a random subset of videos from each dataset,

and run every method on them. All participants are asked

to rate the overall quality of each selected subset of video

frames by assigning a rating from 1 to 10, where 1 corre-

sponding to “The selected frames are not at all informative

in covering the important content from the original video”

and 10 corresponding to “The selected frames are extremely

informative in covering the important content from the orig-

inal video”. For each video, the human rating is computed

as the averaged rating from all participants (see supplemen-
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Dataset OK SC MH LL SMRS FFNet

Tour20 7.96 8.18 8.49 5.28 4.18 8.70

TVSum 7.30 7.01 8.10 4.56 3.10 8.95

Table 2. Human ratings for selected video frames from differ-

ent methods. The rating for each method is generated by averag-

ing the ratings from all participants. Higher scores indicate better

coverage of the important content. Our FFNet achieves the highest

rating on both Tour20 and TVSum datasets.

tary for more details). Table 2 shows the average ratings for

both Tour20 and TVSum datasets. For both datasets, consis-

tent with the quantitative analysis results, our FFNet outper-

forms all other methods in covering the important content.

4.4. Processing Efficiency

All prior methods (OK, MH, LL, SC, SMRS) require

processing the entire video (100%). In contrast, our FFNet

does not process the frames it skips over. In average, it

only processes 18.67% of the video frames, which could

greatly improve computation efficiency, reduce resource re-

quirement, and lower energy consumption. Note that the re-

quirements on storage and communication are also reduced,

but not as much. This is because the neighboring windows

of the processed frames are also considered as important for

users, and should be stored and transmitted (if needed).

In Fig. 8, we take the video MC10 in Tour20 dataset as an

example to illustrate the processing percentage over time for

different methods. Microsoft Hyperlapse (MH), Spectral

clustering (SC) and SMRS are offline methods that process

the entire video. Online Kmeans (OK) takes frames up to

the current time, and its processing percentage is linear with

respect to the frame number. LiveLight (LL) updates every

50 frames, therefore the processing percentage has a step-

wise shape over time. Our FFNet processes the frames at a

dynamic speed based on the video content, and eventually

only needs to process about 26% of the total video frames.

On a Tesla K80 GPU, the average processing time per

frame of FFNet is 8.9357 ∗ 10−3s, which indicates an av-

erage frame rate of 112 fps. Most of the processing time

devotes to feature extraction. The fast-forward process only

takes 11.28% of the time. On less-capable embedded pro-

cessors, we may not achieve such high frame rate, but the

low processing percentage should still help improve com-

putation efficiency and achieving near real-time speed.

We also analyze the average running time of differ-

ent methods and observe that our approach is significantly

faster than the compared baselines. For a example, on a

random subset videos from TVSum dataset, our proposed

FFNet takes only 0.71s on to achieve 97% coverage (at hit

number 10) while the second fastest baseline SC takes 3.99s

to achieve 58% coverage and the third fastest baseline OK

takes 11.58s with 71.27% coverage.
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Figure 8. Example of frame processing percentage over time

for different methods. We take the video MC10 (867 frames)

in Tour20 dataset as an example. Offline methods MH, SC and

SMRS need to process the entire video before generating the sub-

set. For online methods OK and LL, the processing percentage

increases with time and reaches 100% in the end. Our FFNet pro-

cesses the frames based on the video content and eventually only

need to process about 26% of the total frames.

Supplementary Material. Additional results and dis-

cussions along with qualitative summaries are included in

the supplementary material. We also provide details on the

datasets and user study in the supplementary material.

5. Conclusion

In this paper, we present a supervised framework

(FFNet) for fast-forwarding videos in an online fashion,

by modeling the fast-forwarding operation as an Markov

decision process and solving it with a Q-learning method.

Quantitative and qualitative results demonstrate that

FFNet outperforms multiple baseline methods in both

performance and efficiency. It provides an informative

subset of video frames that have better coverage of the

important content in original video. At the same time, it

only processes a small percentage of video frames, which

improves computation efficiency and reduces requirements

on various resources. In the future, we plan to work on

integrating this method with practical system constraints

like energy and available bandwidth. It would also be in-

teresting to extend our approach by introducing memory in

the form of LSTMs–we leave this as part of the future work.
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